idw - Informationsdienst
Wissenschaft
How can the lithium-ion battery (LIB) be further improved? Scientists from , Münster Electrochemical Energy Technology (MEET) oft he University of Münster developed new methods for capillary electrophoresis. For the first time, this enables a detailed analysis of the transition metal dissolution from LIB cathode materials or the current collector – such as manganese or copper. The results as well as the newly developed methods were published in three papers in the journal "Electrophoresis".
How can the lithium-ion battery (LIB) be further improved? To answer this question, MEET scientists around Lenard Hanf developed new methods for capillary electrophoresis. For the first time, this enables a detailed analysis of the transition metal dissolution from LIB cathode materials or the current collector – such as manganese or copper.
New method delivers previously unknown results
Transition metal dissolution in the electrolyte leads to a loss of capacity and thus reduces the lifespan of the LIB. Until now, suitable methods to determine the oxidation state of several dissolved transition metals simultaneously have been missing. In addition, their analysis is still a young field of research.
"Previously, researchers often only examined the total quantity of dissolved transition metals in the electrolyte. Therefore, important information was lost, for example which oxidation states of the transition metals occur at all and what influence a specific one has on the performance of the battery cell," explains MEET scientist Lenard Hanf. But these insights are fundamental for developing longer-lasting LIBs because they are the key for counteracting transition metal dissolution with precisely tailored additives or ion scavengers. This allows the LIB to be further optimised.
Therefore, MEET researchers have developed new methods for capillary electrophoresis. With these techniques they are able to determine the oxidation states of several dissolved transition metals simultaneously. One of the major challenges was to design the method in such a way that samples are not changed during extraction and analysis. Thus, important information would be destroyed. "We stabilised the partly unstable and highly sensitive metals with suitable complexing agents", explains Hanf. Using the new approaches, the scientific team at MEET analysed various cathode materials and copper-based current collectors in the battery electrolyte in detail.
The results as well as the newly developed methods were introduced by MEET scientists Lenard Hanf, Marcel Diehl, Jonas Henschel, Lea-Sophie-Kemper, Prof. Dr. Martin Winter and Dr. Sascha Nowak in three papers in the journal "Electrophoresis".
Lenard Hanf
MEET - Münster Electrochemical Energy Technology
University of münster
Phone: +49 251 83-36785
Mail: lenard.hanf@uni-muenster.de
Hanf, L.; et al. (2020): Mn2+ or Mn3+? Investigating transition metal dissolution of manganese species in lithium ion battery electrolytes by capillary electrophoresis. Electrophoresis. Doi: 10.1002/elps.201900443
Hanf, L.; et al (2020): Investigating the oxidation state of Fe from LiFePO4‐based lithium ion battery cathodes via capillary electrophoresis. Electrophoresis. Doi: 10.1002/elps.202000097
Hanf, L.; et al. (2020): Accessing copper oxidation states of dissolved negative electrode current collectors in lithium ion batteries. Doi: 10.1002/elps.202000155
Criteria of this press release:
Business and commerce, Journalists
Chemistry, Energy
transregional, national
Research results
English
You can combine search terms with and, or and/or not, e.g. Philo not logy.
You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).
Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.
You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).
If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).