idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
09/25/2020 12:00

Sicher verpackte Medikamentenlieferung in die Zelle

Dr. Ulrich Marsch Corporate Communications Center
Technische Universität München

    Arzneimittel haben oft unerwünschte Nebenwirkungen. Ein Grund dafür ist, dass sie nicht nur kranke, sondern auch gesunde Zellen erreichen und auf diese wirken. Forscherinnen und Forscher der Technischen Universität München (TUM) haben in Zusammenarbeit mit der Königlichen Technischen Hochschule (KTH) in Stockholm eine stabile Nano-Verpackung für Medikamente entwickelt. Durch einen speziellen Mechanismus sollen die Wirkstoffe nur in den erkrankten Zellen freigesetzt werden.

    Unser Körper ist aus Milliarden von Zellen aufgebaut. Bei einer Krebserkrankung ist das Genom einiger dieser Zellen krankhaft verändert, sodass diese sich unkontrolliert teilen. Auch bei Virusinfektionen befindet sich die Ursache der Erkrankung in den betroffenen Zellen. Mithilfe von Medikamenten wird etwa während einer Chemotherapie versucht, diese Zellen zu zerstören. Allerdings wirkt die Therapie auf den gesamten Körper, auch gesunde Zellen werden geschädigt, und es kommt zu teils heftigen Nebenwirkungen.

    Ein Forschungsteam um Prof. Oliver Lieleg, Inhaber der Professur für Biomechanik und Mitglied bei der Munich School of BioEngineering der TUM, und um Prof. Thomas Crouzier von der KTH haben ein Transportsystem entwickelt, durch das der Wirkstoff nur innerhalb der betroffenen Zellen freigesetzt werden soll. „Die Wirkstoffträger werden zwar von allen Zellen aufgenommen“, erklärt Lieleg. „Aber die Fähigkeit, den Wirkstoff freizusetzen, sollen nur die erkrankten Zellen besitzen.“

    Synthetische DNS hält die Wirkstoffträger geschlossen

    Die Wissenschaftlerinnen und Wissenschaftler konnten nun zeigen, dass der Mechanismus in Tumor-Modellsystemen aus Zellkulturen funktioniert. Zunächst verpackten sie die Wirkstoffe. Dazu nutzen sie die sogenannten Mucine. Diese sind Hauptbestandteile des Schleims, der zum Beispiel an den Schleimhäuten im Mund, Magen oder Darm gebildet wird. Mucine bestehen aus einem Proteinrückgrat, an das Zuckermoleküle angeheftet sind. „Da Mucine im Körper vorkommen, können geöffnete Mucin-Partikel später von den Zellen abgebaut werden“, sagt Lieleg.

    Ein weiterer wichtiger Bestandteil der Verpackung ist ebenfalls im Körper zu finden: die Desoxyribonukleinsäure (DNS), Trägerin unserer Erbinformation. Die Forscherinnen und Forscher stellten DNS-Strukturen mit von ihnen gewünschten Eigenschaften synthetisch her und hefteten sie chemisch an die Mucine. Wird nun der Lösung, in der sich die Mucin-DNS-Moleküle und der Wirkstoff befinden, Glycerin zugesetzt, sinkt die Löslichkeit der Mucine, sie falten sich zusammen und schließen den Wirkstoff ein. Die DNS-Stränge binden sich aneinander und stabilisieren die Struktur, sodass sie sich nicht mehr von alleine auffalten kann.

    Das Schloss zum Schlüssel

    Nur der richtige "Schlüssel" kann die DNS-stabilisierten Partikel wieder öffnen, sodass die eingekapselten Wirkstoffmoleküle auch freigesetzt werden. Dabei nutzen die Forscherinnen und Forscher sogenannte MikroRNS-Moleküle. RNS oder Ribonukleinsäure ist vom Aufbau der DNS sehr ähnlich und spielt eine große Rolle bei der Proteinsynthese im Körper, kann aber auch andere Zellprozesse regulieren.

    "In Krebszellen sind MikroRNS-Stränge vorhanden, deren Aufbau uns genau bekannt ist“, erklärt Ceren Kimna, Erstautorin der Studie. “Um sie als Schlüssel zu nutzen, haben wir das Schloss entsprechend angepasst – durch sorgfältiges Design der synthetischen DNS-Stränge, die unsere Medikamententrägerpartikel stabilisieren.“ Die DNS-Stränge sind so aufgebaut, dass die MikroRNS-Moleküle daran binden können und dadurch die vorhandenen Bindungen, die die Struktur stabilisieren, auflösen. Die synthetischen DNS-Stränge in den Partikeln können auch an Mikro-RNS-Strukturen angepasst werden, die bei anderen Krankheiten wie Diabetes oder Hepatitis auftreten.

    Noch ist die klinische Anwendung des neuen Mechanismus nicht erprobt; vorher sind erst weitere Untersuchungen im Labor mit komplexeren Tumor-Modellsystemen erforderlich. Auch wollen die Forscherinnen und Forscher weitere Modifikationen dieses Mechanismus zur Wirkstofffreisetzung untersuchen, um die bestehenden Krebstherapien zu verbessern.


    Original publication:

    Ceren Kimna, Theresa Monika Lutz, Hongji Yan, Jian Song, Thomas Crouzier, and Oliver Lieleg: DNA Strands Trigger the Intracellular Release of Drugs from Mucin-Based Nanocarriers, ACS Nano
    DOI: 10.1021/acsnano.0c04035


    More information:

    https://mediatum.ub.tum.de/1575391 Hochauflösende Bilder


    Images

    Criteria of this press release:
    Journalists
    Biology, Chemistry, Medicine
    transregional, national
    Research results
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).