idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
03/17/2021 14:00

Physicists able to determine properties of mesoporous materials more precisely: “We Marry Disorder with Order”

Susann Huster Stabsstelle Universitätskommunikation / Medienredaktion
Universität Leipzig

    We’ve all come across them before: those little bags of small balls that come packed together with new shoes or electrical goods. The balls are there to absorb moisture so as to protect the items from damage. “These materials act like a sponge,” explains physicist Professor Rustem Valiullin from Leipzig University.

    He and his research group have found a way to more precisely determine the properties of these materials, because they can better account for the underlying disorder. Their article has been designated “ACS Editors’ Choice” by the editors of the American Chemical Society journals, who recognise the “importance to the global scientific community” of the Leipzig researchers’ work and see it as a breakthrough in the accurate description of phase transition phenomena in disordered porous materials.

    In mesoporous materials, the pore openings are far smaller than in a normal sponge: their diameters range from 2 to 50 nanometres and are invisible to the naked eye. Nevertheless, they have a number of interesting properties, including with regard to separating substances. This occurs as a function of molecule and pore size, for example.

    Until now, scientific experiments have only been able to approximate the desired properties of these materials. “So it is more down to experience whether you can determine which of the structures can be used for which applications,” says the physicist. The problem is that these materials are mostly disordered, which means that pores of different sizes in the material form a complex network structure.

    Researchers at Leipzig University developed a model that determines the features that can be observed in such complex pore networks. Professor Valiullin describes the approach as follows: “We can statistically describe how the individual pores in these networks are coupled to each other. We marry disorder with order.” This makes it possible to determine the physical phenomena that need to be understood in gas-liquid and solid-liquid phase transitions, for example. And not only in theory: using special mesoporous modelling, it was possible to prove with the aid of modern nuclear magnetic resonance methods that the theoretical results can also be directly applied in practice.

    This should make it easier to use such materials in the future, for example to help release drugs into the human body over an extended period – precisely when necessary and desired. Other potential applications for such materials include sensor technology or energy storage and conversion.

    Original title of the publication in the American Chemical Society journal Langmuir:

    “Impact of Geometrical Disorder on Phase Equilibria of Fluids and Solids Confined in Mesoporous Materials”, doi.org/10.1021/acs.langmuir.0c03047

    Jörg Aberger


    Contact for scientific information:

    Prof. Dr. Rustem Valiullin
    Felix-Bloch-Institut für Festkörperphysik, Fakultät für Physik und Geowissenschaften
    Telephone +49 341 97 32515
    E-Mail: valiullin@uni-leipzig.de


    More information:

    https://pubs.acs.org/doi/full/10.1021/acs.langmuir.0c03047#
    http://Editors' Choice: https://pubs.acs.org/editorschoice


    Images

    Professor Rustem Valiullin with a nuclear magnetic resonance spectrometer.
    Professor Rustem Valiullin with a nuclear magnetic resonance spectrometer.
    Photo: Swen Reichhold


    Criteria of this press release:
    Journalists, Scientists and scholars
    Physics / astronomy
    transregional, national
    Research results, Scientific Publications
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).