idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
03/25/2021 11:09

Learning microswimmers - Miniaturised machines to be made capable of learning with machine learning algorithms

Susann Huster Stabsstelle Universitätskommunikation / Medienredaktion
Universität Leipzig

    Living organisms, from bacteria to animals and humans, can perceive their environment and process, store and retrieve this information. They learn how to react to later situations using appropriate actions. A team of physicists at Leipzig University led by Professor Frank Cichos, in collaboration with colleagues at Charles University Prague, have developed a method for giving tiny artificial microswimmers a certain ability to learn using machine learning algorithms. They recently published a paper on this topic in the renowned journal Science Robotics.

    Microswimmers are artificial, self-propelled, microscopic particles. They are capable of directional motion in a solution. The Molecular Nanophotonics Group at Leipzig University has developed special particles that are smaller than one-thirtieth of the diameter of a hair. They can change their direction of motion by heating tiny gold particles on their surface and converting this energy into motion. “However, these miniaturised machines cannot take in and learn information like their living counterparts. To achieve this, we control the microswimmers externally so that they learn to navigate in a virtual environment through what is known as reinforcement learning,” said Cichos.

    With the help of virtual rewards, the microswimmers find their way through the liquid while repeatedly being thrown off of their path, mainly by Brownian motion. “Our results show that the best swimmer is not the one that is fastest, but rather that there is an optimal speed,” said Viktor Holubec, who worked on the project as a fellow of the Alexander von Humboldt Foundation and has now returned to the university in Prague.According to the scientists, linking artificial intelligence and active systems like in these microswimmers is a first small step towards new intelligent microscopic materials that can autonomously perform tasks while also adapting to their new environment. At the same time, they hope that the combination of artificial microswimmers and machine learning methods will provide new insights into the emergence of collective behaviour in biological systems. “Our goal is to develop artificial, smart building blocks that can perceive their environmental influences and actively react to them,” said the physicist. Once this method is fully developed and has been applied to other material systems, including biological ones, it could be used, for example, in the development of smart drugs or microscopic robot swarms.


    Contact for scientific information:

    Professor Frank Cichos
    Leipzig University; Faculty of Physics and Earth Sciences
    Phone: +49 341 9732571
    E-Mail: cichos@physik.uni-leipzig.de


    Original publication:

    Original title of the publication in Science Robotics:
    “Reinforcement Learning with Artificial Microswimmers”; DOI: 10.1126/scirobotics.abd9285
    https://robotics.sciencemag.org/content/6/52/eabd9285


    Images

    Electron microscope image of a microswimmer. The particle is 2.18 micrometres in diameter. The small, brighter dots on the particle are gold nanoparticles about 8 nanometres in size.
    Electron microscope image of a microswimmer. The particle is 2.18 micrometres in diameter. The small ...
    Photo: Leipzig University

    Professor Frank Cichos.
    Professor Frank Cichos.
    Photo: Swen Reichhold


    Criteria of this press release:
    Journalists, Scientists and scholars
    Physics / astronomy
    transregional, national
    Research results, Scientific Publications
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).