idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
08/26/2021 13:29

Kleine Strukturen auf großen Skalen

Nina Reckendorf Stabsstelle Presse, Kommunikation und Marketing
Universität Paderborn

    Wissenschaftler der Universität Paderborn erforschen Quantennetzwerke

    Sogenannte optische Quantennetzwerke bilden die Basis für zukünftige Technologien wie den Quantencomputer oder das Quanteninternet. Eine Herausforderung bei der Realisierung solcher Netzwerke ist bislang die Notwendigkeit, viele Bauteile in einem großen System miteinander zu verschalten. Wissenschaftler der Universität Paderborn wollen diese Hürde im Rahmen des Forschungsprojekts „Qinos“ (Quantenbauelemente – integriert, optisch, skalierbar) mithilfe dünner Schichten aus Lithiumniobat überwinden. Ziel ist es, ein einfaches integriertes Quantennetzwerk zu entwickeln, das die Basisfunktionalitäten großer Netzwerke demonstrieren soll. Das Vorhaben wird vom Bundesministerium für Bildung und Forschung (BMBF) ab September für zwei Jahre mit rund 1,9 Millionen Euro gefördert.

    Für Quantenanwendungen ist Dünnschicht-Lithiumniobat (LNOI) ein vielversprechender Kandidat: „Es ermöglicht bisher nicht umsetzbare Funktionalitäten wie schnelle elektrooptische Schalter oder hocheffiziente Photonenpaarquellen. Photonen sind kleine Lichtteilchen, aus denen elektromagnetische Strahlung besteht“, erklärt Dr. Christof Eigner, der die Projektführung in der Gruppe für Integrierte Quantenoptik von Leibniz-Preisträgerin Prof. Dr. Christine Silberhorn übernommen hat. Die Wissenschaftler entwickeln mit dem Material einen neuartigen skalierbaren Ansatz, um eine Vielzahl von funktionalen Elementen miteinander zu verbinden. „Die herausragenden Eigenschaften von Lithiumniobat werden heutzutage zum Beispiel schon sehr häufig in der Telekommunikationsindustrie genutzt. Allerdings stoßen konventionelle Lithiumniobat-Bauteile an ihre Grenzen, insbesondere im Hinblick auf die Integrationsdichte, also der maximalen Anzahl von Quellen und Schaltern, die auf einem Bauteil kombiniert werden kann. LNOI adressiert genau diese Schwächen. So können hochpräzise Strukturen mittels Lithographie auf Substrate übertragen werden. Damit lassen sich komplexe Quantenschaltkreise mit hohem Anwendungspotenzial verwirklichen, die auf anderen Materialplattformen in dieser Form nicht umsetzbar sind“, so Eigner weiter.

    Die Physiker entwickeln ein Netzwerk, bei dem eine integrierte Photonenpaarquelle mit einem integrierten wellenlängenselektiven Strahlteiler kombiniert wird. Erzeugt werden die Photonen durch Laserlicht. Anschließend werden die Paare aufgetrennt und in unterschiedlichen Ausgängen für die Endnutzung zur Verfügung gestellt. Eigner: „Damit zeigen wir die effiziente Erzeugung von Quantenlicht und das Routing, also quasi das Steuern von Photonen in einem Quantennetzwerk.“

    Auf Basis der im Projekt erzielten Ergebnisse könnten in Zukunft multifunktionale, anwendungsorientierte Quantenbauelemente realisiert und zu großen, komplexen Netzwerken verschaltet werden. Darüber hinaus soll durch die Einbindung von Industriepartnern die gesamte Wertschöpfungskette für die photonische Quantenhardware in die industrielle Anwendung geführt werden. Das Team rechnet bereits im nächsten Jahr mit ersten Ergebnissen.

    Das BMBF unterstützt das Vorhaben im Rahmen des Förderprogramms „Quantentechnologien – von den Grundlagen zum Markt“ (Förderkennzeichen 13N15975).


    Contact for scientific information:

    Dr. Christof Eigner, Department Physik der Universität Paderborn, E-Mail: christof.eigner@upb.de, Fon: 05251 60-5896


    Images

    Ein integriert photonisches Quantenbauelement mit direkter Faserankopplung. Wissenschaftler der Universität Paderborn nutzen es für die Forschung an Quantennetzwerken.
    Ein integriert photonisches Quantenbauelement mit direkter Faserankopplung. Wissenschaftler der Univ ...
    Besim Mazhiqi
    Universität Paderborn


    Criteria of this press release:
    Journalists, Scientists and scholars
    Physics / astronomy
    transregional, national
    Research projects
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).