idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
11/23/2021 09:50

Chemistry: Researchers develop novel, inexpensive catalysts enabling noble metal chemistry

Claudia Neumeier Stabsstelle Zentrale Kommunikation
Martin-Luther-Universität Halle-Wittenberg

    Alkynes have many uses in industry. Until now, it was assumed that gold- or platinum-based catalysts were absolutely necessary for certain chemical reactions with alkynes. Chemists at Martin Luther University Halle-Wittenberg (MLU) have now succeeded in carrying out the same reactions with considerably less expensive materials. The team reports on its work in the "Journal of the American Chemical Society".

    Alkynes are hydrocarbons that contain carbon-carbon triple bonds. They are among the basic building blocks of organic chemistry. "For the desired industrial reactions, the triple bond must be activated in a special, so-called soft, manner. So far, this has been observed primarily in reactions with catalysts based on precious metals, especially gold or platinum. There is a long-standing consensus in the scientific community on why these elements dominate in the intricate types of alkynes’ activation", explains Professor Konstantin Amsharov from the Institute for Chemistry at MLU. However, gold and platinum are not only expensive but also relatively rare.

    In the new study, the chemists show that under certain conditions, a catalyst based on aluminium oxide induces activation of alkynes similarly to gold- and platinum-based catalysts. "This material is inexpensive and accessible", says Amsharov. The team also provides an explanation for this. "With our new approach, we can mimic the interaction of gold and alkyne species at the electron level. In some cases, the reactions were even more efficient", says Amsharov.

    So far, the researchers have proven the new method only on a laboratory scale. "With our study, we have provided fundamental proof that metal oxides can be used as comparable catalysts", says Dr Vladimir Akhmetov from MLU, co-author of the paper. Further studies will now investigate which common reactions the discovery could be applied to.



    The study was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)



    Study: Akhmetov V., Feofanov M., Sharapa D. I., Amsharov K. Alumina-mediated π-Activation of Alkynes. Journal of the American Chemical Society (2021). https://pubs.acs.org/doi/10.1021/jacs.1c07845


    Contact for scientific information:

    Professor Konstantin Amsharov
    Institute of Chemistry
    email: konstantin.amsharov@chemie.uni-halle.de


    Original publication:

    Akhmetov V., Feofanov M., Sharapa D. I., Amsharov K. Alumina-mediated π-Activation of Alkynes. Journal of the American Chemical Society (2021). https://pubs.acs.org/doi/10.1021/jacs.1c07845


    Images

    Criteria of this press release:
    Journalists, Scientists and scholars
    Chemistry
    transregional, national
    Research results
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).