idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
01/20/2022 14:10

Attack on the malaria parasite cytoskeleton

Kathrin Anna Kirstein Kommunikation, Marketing und Veranstaltungsmanagement
Humboldt-Universität zu Berlin

    Researchers succeeded in the purification of Plasmodium “tubulin”, the molecular building block of cytoskeletal filaments - an important step in the search for novel anti-malarials.

    Despite all efforts, malaria remains one of the deadliest diseases with an estimated 240.000.000 cases and more than 600.000 fatalities in 2020 alone. Sadly, most malaria deaths (60-75 per cent) still occur in children aged under 5 years (World Malaria Report 2021). Thus, reducing the burden of malaria cases and deaths remains a global aim and medical challenge.

    Like most eukaryotic cells, Plasmodium falciparum, the causative agent of malaria, relies on its cytoskeletal filaments, including microtubules, for proliferation, growth, and transmission. Indeed, microtubules and their molecular building block tubulin have gained outstanding importance as targets for drug development, in particular for a variety of cancers. Despite the remarkable successes in chemotherapies, the development of parasite-specific tubulin drugs has been neglected. Although P. falciparum and human tubulin are very similar, molecular biologist and first author of the study William Hirst and colleagues reasoned that the tubulins were sufficiently divergent to identify compounds that would selectively disrupt parasite microtubules but would keep the human cytoskeleton intact.

    Researchers can now screen for parasite-specific inhibitors

    So far, the limitation for testing this idea was the availability of P. falciparum tubulin. In this study, Hirst and colleagues from Humboldt-Universität zu Berlin, Freie Universität Berlin and the Australian National University in Canberra, succeeded for the first time in the purification and characterization of functional Plasmodium tubulin from infected human red blood cells. Now that functional parasite and human tubulin were available, the researchers could pursue their idea and screen for parasite-specific inhibitors. They tested compounds that had already been suspected to specifically target Plasmodium microtubules, but for which the exact molecular mechanism of parasite growth inhibition remained unknown.

    Among the various compounds tested, two compounds exhibited selective toxicity towards parasite microtubules but - importantly - did not inhibit human microtubule growth. Simone Reber, head of the research group, is very enthusiastic about this success. “Our ability to now specifically screen for compounds that disrupt protozoan microtubule growth without affecting human microtubules provides an exciting opportunity for the development of novel, much-needed anti-malarials.” she says.
    This research was funded by the Alliance Berlin-Canberra “Crossing Boundaries: Molecular Interactions in Malaria” which is co-funded by grants from the Deutsche Forschungsgemeinschaft (DFG) and the Australian National University (ANU) for the International Research Training Group (IRTG) 2290 at the IRI Life Sciences. It supported William Hirst and Dominik Fachet and enabled their stay in the lab of Kevin Saliba at the ANU, Canberra.

    About IRI Life Sciences

    The Integrative Research Institute (IRI) for the Life Sciences was founded in 2013 as part of the Excellence Initiative by Humboldt-Universität zu Berlin together with Charité-Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC). The researchers at IRI Life Sciences conduct interdisciplinary basic research. They use innovative methods to investigate the cellular causes of cancer and infectious diseases, for example.

    Contact

    Robert Kircher-Reineke
    Media and Communications
    IRI Life Sciences

    Phone: +49 (0)30 2093-47903
    robert.kircher-reineke@hu-berlin.de


    Original publication:

    William G. Hirst, Dominik Fachet, Benno Kuropka, Christoph Weise, Kevin J. Saliba, Simone Reber. Purification of functional Plasmodium falciparum tubulin allows for the identification of parasite-specific microtubule inhibitors. Current Biology (2021). DOI: https://doi.org/10.1016/j.cub.2021.12.049


    Images

    Dynamic microtubules can be visualised using total internal reflection fluorescence (TIRF) microscopy, which can be used to characterise differences between parasite (l) and mammalian HEK293 (r) tubulin.
    Dynamic microtubules can be visualised using total internal reflection fluorescence (TIRF) microscop ...
    Simone Reber
    Simone Reber / IRI Life Sciences


    Criteria of this press release:
    Journalists, Scientists and scholars
    Biology
    transregional, national
    Research results
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).