idw - Informationsdienst
Wissenschaft
Physik: Publikation in Science Advances
Forschende der Heinrich-Heine-Universität Düsseldorf (HHU) und des Max-Planck-Instituts für Multidisziplinäre Naturwissenschaften in Göttingen (MPIBPC) untersuchten mittels optischer Methoden, wie sich sehr kleine Teilchen in einem fraktalen Medium bewegen. Sie fanden heraus, dass die Bewegungen mit einem neu entwickelten Modell quantitativ beschrieben werden können. Das Team berichtet in der Fachzeitschrift Science Advances, dass dies auch für die Transkription von Genen relevant ist.
Kolloide sind winzige Teilchen – ein millionstel bis zu ein tausendstel Millimeter groß –, die sich in einer Flüssigkeit oder auch in der Luft bewegen. Scheinbar tanzender Staub in der Luft oder Schwebeteilchen in Wasser sind hierfür alltäglich beobachtbare Beispiele.
Diese Teilchen führen zufällige, sogenannte Brownsche Bewegungen aus. Während sich die Teilchen in den oben genannten Beispielen frei bewegen können, ist die Bewegung der Kolloide in anderen Fällen oft durch ihre Umgebung eingeschränkt. Dies gilt etwa für Teilchen im Erdboden oder für Proteine in einer biologischen Zelle. Um solche eingeschränkten Bewegungen quantitativ zu beschreiben, wird oft angenommen, dass die Umgebung fraktale Eigenschaften hat.
Fraktale sind idealisierte geometrische Objekte, die auf allen Längenskalen gleich aussehen: Ein Ausschnitt eines Fraktals ähnelt also einem kleineren Ausschnitt ebenso wie einem noch kleineren Ausschnitt – dies wird auch „Selbstähnlichkeit“ genannt. Es wird zwischen zwei Arten unterschieden: den „deterministischen Fraktalen“, die auf allen Längenskalen identisch sind, ein Beispiel hierfür sind Eiskristalle; und den „Zufallsfraktalen“, wo die Ähnlichkeit statistisch ist. In der Natur findet man diese beispielsweise beim Blumenkohl, bei Farnen und Blutgefäßen. Diese realen Strukturen decken jedoch nur eine endliche Längenskala ab und sind damit im Gegensatz zu idealen Fraktalen nur über wenige Stufen selbstähnlich.
Das Forschungsteam nahm an, dass sich die kolloidalen Teilchen wie in einem Labyrinth mit fraktaler Struktur bewegen. Um dies systematisch zu untersuchen, haben die Düsseldorfer Physiker eine solche fraktale Struktur in einem optischen Aufbau mittels einer Milchglasscheibe erzeugt und die Bewegung der Teilchen mit einem optischen Mikroskop beobachtet. Christoph Zunke, ehemaliger Doktorand am Lehrstuhl für Physik der weichen Materie der HHU und Erstautor der Studie, betont die Vielseitigkeit dieses optischen Aufbaus: „Wir können die erzeugte Struktur kontrolliert und systematisch verändern und haben damit einen Werkzeugkasten, mit dem wir viele Situationen aus der Natur abbilden können. Und obwohl die Brownsche Bewegung und die Struktur der Medien zufällig sind, können die Bewegungsmuster durch einfache Gleichungen beschrieben werden.“
Diese Gleichungen, die Dr. Aljaž Godec vom Max-Planck-Institut für Multidisziplinäre Naturwissenschaften in Göttingen hergeleitet hat, überprüfte Zunke zusammen mit seinen Kollegen an der HHU experimentell mithilfe seines optischen Aufbaus.
Prof. Dr. Stefan Egelhaaf, Leiter des Düsseldorfer Lehrstuhls: „Wir konnten zeigen, dass sich Kolloide in diesem Lichtfeld in fraktaler, selbstähnlicher Weise bewegen. Diese experimentellen Ergebnisse bestätigen die theoretischen Voraussagen quantitativ. Außerdem fanden wir heraus, unter welchen Bedingungen eine Bewegung als eine zufällige Bewegung in einer fraktalen Struktur beschrieben werden kann.“
Dr. Godec ergänzt: „Es ist erfreulich, dass die Voraussagen so hervorragend bestätigt wurden. Und wir haben gesehen, dass die Methode auf wichtige praktische Fragestellungen anwendbar ist, etwa aus der Biologie.“ Zum Beispiel auf das Chromatin, das Material also, aus dem die Chromosomen im Zellkern bestehen. Es setzt sich aus dem Erbmolekül DNA und Proteinen zusammen, die insgesamt für deren dreidimensionale Struktur verantwortlich sind. Kürzlich konnte mithilfe von Präzisionsmessungen nachgewiesen werden, dass Chromatin eine selbstähnliche Struktur hat.
Um Gene auszulesen – bei deren „Transkription“ – spielen zufällige Suchprozesse im Zellkern eine wichtige Rolle: Ein Signalmolekül sucht mittels Brownscher Bewegung nach einem Gen, an das es letztlich bindet und damit den Ausleseprozess einleitet. Möglicherweise beschleunigt die fraktale Struktur des Chromatins diesen Suchprozess.
Da Chromatin aber nur auf einer begrenzten Längenskala selbstähnlich ist, wurde die Relevanz seiner fraktalen Struktur für die molekulare Suche wiederholt in Frage gestellt. Godec: „Unsere Ergebnisse zeigen nun eindeutig, dass die Brownsche Bewegung entscheidend von einer fraktalen Struktur des Mediums beeinflusst wird, auch wenn es nur über eine begrenzte Längenskala selbstähnlich ist. Dies gilt eben auch für das Chromatin. Unsere Ergebnisse stützen die Annahme, dass die fraktale Struktur des Chromatins für die Steuerung der Transkription relevant ist.“
C. Zunke, J. Bewerunge, F. Platten, S.U. Egelhaaf, A. Godec, First-passage statistics of colloids on fractals: Theory and experimental realization, Sci. Adv. 8, eabk0627 (2022).
DOI: 10.1126/sciadv.abk0627
Experimenteller Aufbau an der HHU. In der Probenebene wird ein Lichtfeld mit fraktaler Struktur erze ...
HHU und MPIBPC / Zunke et al.
Darstellung eines deterministischen (links) und eines Zufallsfraktals (rechts), die die Selbstähnlic ...
HHU und MPIBPC / Zunke et al.
Criteria of this press release:
Journalists
Physics / astronomy
transregional, national
Research results, Scientific Publications
German
You can combine search terms with and, or and/or not, e.g. Philo not logy.
You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).
Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.
You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).
If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).