idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
02/08/2022 16:01

Neue Technologie für klinische Computertomographie

Carolin Lerch Corporate Communications Center
Technische Universität München

    Ein Forschungsteam der Technischen Universität München (TUM) hat erstmalig eine neue Röntgenmethode, das Dunkelfeld-Röntgen, in einen für den Patienteneinsatz ausgelegten Computertomographen integriert. Dunkelfeld-Röntgen liefert zusätzliche Informationen zu konventionellen Röntgenaufnahmen. Mit dem neuen Prototyp sind dreidimensionale Dunkelfeld-Röntgenaufnahmen möglich.

    Computertomographie (CT) ist eine der wichtigsten Methoden in Kliniken für präzise und schnelle Diagnosen. Bisher werden dafür konventionelle Röntgenaufnahmen verwendet, um diese dann in ein dreidimensionales CT-Bild umzurechnen.

    Eine neue Röntgentechnologie, das Dunkelfeld-Röntgen, kann zusätzliche Informationen liefern und feine Gewebestrukturen, insbesondere der Lunge, deutlich detaillierter als bisher abbilden. Bisher gab es jedoch aufgrund technischer Herausforderungen keine Möglichkeit, Patientinnen und Patienten mit der neuen Röntgentechnologie in einem klinischen CT-Gerät zu untersuchen.

    Ein Forschungsteam um Franz Pfeiffer, Professor für biomedizinische Physik und Direktor des Munich Institute of Biomedical Engineering der TUM, hat nun ein CT-Gerät so weiterentwickelt, dass es beide Röntgentechnologien kombiniert. „Wir konnten erstmals zeigen, dass sich das Dunkelfeld-Röntgen auch in einen klinischen Computertomographen integrieren lässt. Obgleich noch eine neue Technologie, zeigen vorangegangene, vorklinische Studien mit Mäusen bereits deutliche Vorteile der Dunkelfeld-Computertomographie, vor allem für die Bildgebung von Lungengewebe“, sagt Franz Pfeiffer, Leiter der Studie.

    Der neue CT-Prototyp wurde bereits erfolgreich mit einem sogenannten Thorax Phantom, einem künstlichen Modell eines menschlichen Oberkörpers, getestet, und ist groß genug für den geplanten Einsatz bei Patientinnen und Patienten.

    Konventionelles Röntgen

    Auf dem Weg von der Röntgenquelle zum Detektor wird Röntgenlicht durch das dazwischenliegende Gewebe abgeschwächt. Konventionelles Röntgen nutzt diesen Effekt zur Bildgebung, da die Abschwächung je nach Art und Struktur des Gewebes unterschiedlich stark ist. Dadurch erscheinen Strukturen wie beispielsweise Knochen, die das Röntgenlicht stärker abschwächen, im konventionellen Röntgenbild hell, während durchlässigeres Gewebe wie die Lunge dunkel erscheint.

    Dunkelfeld-Röntgen

    Dunkelfeld-Röntgen nutzt hingegen die Streuung des Röntgenlichts. Trifft Röntgenlicht auf Materialien unterschiedlicher Dichte, wie zum Beispiel an den Grenzflächen zwischen Lungengewebe und Luft, wird es kleinwinklig gestreut. Wertet man diese Kleinwinkelstreuung aus, erhält man zusätzliche Informationen über feinste Gewebestrukturen, die mit konventionellen Röntgenverfahren nicht auflösbar wären.

    Gittertechnologie für das Dunkelfeld-Röntgen

    Um das gestreute Röntgenlicht detektieren zu können, sind spezielle optische Elemente, sogenannte mikrostrukturierte Gitter, nötig. Diese werden zwischen Röntgenquelle und Detektor angebracht. Wenn das Röntgenlicht die Gitter passiert, entsteht ein charakteristisches Muster auf dem Detektor. Platziert man eine Probe oder Person zwischen den Gittern, verändert sich das Muster. Dadurch sind Rückschlüsse auf die Struktur der Probe oder das Gewebe der Person möglich.

    Neue Hard- und Softwarekomponenten für die Dunkelfeld-CT

    Die Umsetzung der Dunkelfeld-Methode in einem CT-Gerät für die menschliche Größe bringt verschiedene technische Herausforderungen mit sich. Deswegen war die Größe von Dunkelfeld-CT-Geräten bisher auf deutlich kleinere Dimensionen beschränkt, die für den Einsatz beim Menschen nicht ausreichen. Außer der Größe stellt auch die schnell rotierende Scan-Einheit spezielle Anforderungen an die technischen Komponenten.

    Die Scan-Einheit von CT-Geräten, Gantry genannt, rotiert sehr schnell. Dabei entstehen Vibrationen, die Auswirkungen auf die fein abgestimmte Technik im Inneren des Geräts haben. Auf der Basis einer detaillierten Analyse der Vibrationen gelang es dem Forschungsteam, die Vibrationen sogar zu nutzen, um die für die Dunkelfeld-Bildgebung notwendige Verschiebung der Gitter gegeneinander zu realisieren. Für die Auswertung der Scans entwickelten sie neue Algorithmen, die auf der Grundlage von Referenzscans die auf Vibrationen zurückzuführenden Effekte herausrechnen.

    Zusätzliche Informationen für Diagnosen in der Klinik

    „Mit dem Dunkelfeld-CT-Prototyp können wir beim gleichen Scan-Durchgang konventionelle Röntgenaufnahmen und Dunkelfeld-Aufnahmen machen. Dadurch gewinnen wir zusätzliche Informationen. Diese könnten zukünftig nicht nur bei der Diagnose von Lungenkrankheiten, sondern beispielsweise auch bei der Diagnose von Nierensteinen und Ablagerungen im Gewebe von Vorteil sein“¸ sagt Manuel Viermetz, einer der beiden Erstautoren der Studie.

    Die Forschenden planen, die Bildgebung mit dem Dunkelfeld-Computertomographen im nächsten Schritt noch weiter zu optimieren und das Gerät für den ersten Einsatz bei Patientinnen und Patienten vorzubereiten.


    Contact for scientific information:

    Prof. Dr. Franz Pfeiffer
    Technische Universität München
    Lehrstuhl für Biomedizinische Physik
    Tel: +49 89 289 12551
    franz.pfeiffer@tum.de
    https://www.groups.ph.tum.de/e17/home/


    Original publication:

    Dark-field computed tomography reaches the human scale. Manuel Viermetz, Nikolai Gustschin, Clemens Schmid, Jakob Haeusele, Maximilian von Teuffenbach, Pascal Meyer, Frank Bergner, Tobias Lasser, Roland Proksa, Thomas Koehler und Franz Pfeiffer.
    PNAS, Februar 2022. DOI: https://doi.org/10.1073/pnas.2118799119


    More information:

    https://www.bioengineering.tum.de/ Munich Institute of Biomedical Engineering (MIBE)
    https://mediatum.ub.tum.de/1646992 Hochauflösende Bilder für die redaktionelle Berichterstattung


    Images

    Criteria of this press release:
    Journalists, Scientists and scholars, Students, all interested persons
    Medicine, Physics / astronomy
    transregional, national
    Research results, Scientific Publications
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).