idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
03/21/2023 16:54

Synthesegas und Akku-Power mit Energie aus dem Sonnenlicht

Stefanie Reiffert Corporate Communications Center
Technische Universität München

    Mithilfe der Photosynthese gewinnen Pflanzen Energie aus dem Sonnenlicht. Forschende der Technischen Universität München (TUM) haben dieses Prinzip als Grundlage genommen, um neue nachhaltige Verfahren zu entwickeln, mit denen in Zukunft Synthesegas für die chemische Großindustrie hergestellt und Batterien aufgeladen werden könnten.

    Synthesegas, ein Gemisch aus Kohlenmonoxid und Wasserstoff, ist ein wichtiges Zwischenprodukt für die Herstellung vieler chemischer Grundstoffe wie Ammoniak, Methanol und synthetischer Kohlenwasserstoffkraftstoffe. „Synthesegas wird momentan allerdings fast ausschließlich mithilfe fossiler Rohstoffe hergestellt“, erklärt Prof. Roland Fischer vom Lehrstuhl für Anorganische und Metallorganische Chemie der TUM.

    Ein gelbliches Pulver, das ein Forschungsteam um Fischer entwickelt hat, soll das ändern. Inspirieren ließen sich die Wissenschaftler:innen durch die Photosynthese, den Prozess, mit dem Pflanzen aus Licht chemische Energie gewinnen. „Die Natur braucht dazu Kohlendioxid und Wasser“, sagt Fischer. Das von den Forschenden entwickelte Nanomaterial ahmt die Eigenschaften der an der Photosynthese beteiligen Enzyme nach. Das „Nanozym“ soll aus Kohlendioxid, Wasser und Licht Synthesegas produzieren.

    Rekordwert bei der Effizienz

    Dr. Philip Stanley, der das Thema im Rahmen seiner Doktorarbeit bearbeitet hat, erklärt: „Ein Molekül übernimmt die Aufgabe einer Energie-Antenne analog zu einem Chlorophyll-Molekül der Pflanzen. Dabei wird Licht aufgenommen und Elektronen zu einem Reaktionszentrum, dem Katalysator, weitergeleitet.“ Das Innovative an dem System der Forschenden: Es gibt gleich zwei Reaktionszentren, die an die Antenne gekoppelt sind. In einem wird Kohlendioxid zu Kohlenmonoxid umgewandelt und im anderen Wasserstoff aus Wasser gewonnen. Die große Herausforderung bei der Konstruktion war, dass in dem System die Antenne, der Weiterleitungsmechanismus für die Elektronen und die beiden Katalysatoren so angeordnet sind, dass eine möglichst hohe Lichtausbeute erzeugt wird.

    Dies ist gelungen. „Unsere Energieausbeute aus dem Licht ist mit 36 Prozent spektakulär hoch“, sagt Stanley. „Wir können bis zu jedes dritte Photon, also Lichtteilchen, in chemische Energie umsetzen. Bisherige Systeme waren hier höchstens im Bereich von jedem zehnten Teilchen. Dieses Ergebnis lässt hoffen, dass eine technische Umsetzung industrielle chemische Prozesse nachhaltiger machen könnte.“

    Fotokondensatoren für Ladungsspeicherung

    In einem anderen Projekt arbeiten die Forschenden an einem weiteren Material, das elektrische Energie aus der Sonne nutzt – in diesem Fall aber als elektrische Energie speichert. „Eine mögliche zukünftige Anwendung könnten Batterien sein, die durch Sonnenlicht aufgeladen werden, ohne den Umweg über die Steckdose“, erklärt Fischer.
    Bei der Entwicklung dieser sogenannten Fotokondensatoren verwenden die Forschenden ähnliche Bausteine wie bei dem Nanozym. Auch hier absorbiert das Material selbst Photonen aus dem eingestrahlten Licht. Doch statt im Anschluss als Katalysator für eine chemische Reaktion zu dienen, ist der Energie-Empfänger so eng in die Struktur eingebunden, dass er in diesem Zustand verbleibt und so eine langfristige Speicherung der Elektronen ermöglicht wird. Die Machbarkeit des Systems haben die Forschenden im Labor bewiesen.

    „Es gibt zwei Arten, Sonnenenergie direkt zu nutzen“, resümiert Dr. Julien Warnan, Habilitand und Gruppenleiter Photokatalyse. „Wir gewinnen entweder elektrische Energie daraus, oder wir nutzen die Energie, um chemische Reaktionen anzutreiben. Mit zwei Systemen, die auf dem gleichen Prinzip beruhen, ist uns beides experimentell gelungen.“


    Contact for scientific information:

    Prof. Dr. Roland Fischer
    Technische Universität München
    Lehrstuhl für Anorganische und Metallorganische Chemie
    +49 89 289 13080
    roland.fischer@tum.de
    https://www.ch.nat.tum.de/amc/home/


    Original publication:

    Stanley, P.M., Haimerl, J., Shustova, N.B., Fischer, R. A., Warnan, J., Merging molecular catalysts and metal–organic frameworks for photocatalytic fuel production. Nat. Chem. 2022, 14, 1342–1356. https://doi.org/10.1038/s41557-022-01093-x


    Images

    Dr. Philip Stanley kontrolliert einen Kolben, in dem sich das neue Material in einer wässrigen Lösung befindet.
    Dr. Philip Stanley kontrolliert einen Kolben, in dem sich das neue Material in einer wässrigen Lösun ...
    Astrid Eckert
    Astrid Eckert / TUM


    Criteria of this press release:
    Journalists
    Chemistry, Energy, Oceanology / climate
    transregional, national
    Research projects, Research results
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).