idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
04/05/2023 09:36

Evolution von Muskeln: gemeinsamer Ursprung bei Seeanemonen und Mensch

Alexandra Frey Öffentlichkeitsarbeit
Universität Wien

    Entwicklung verschiedener Muskelzelltypen beruht auf Duplikation & Diversifikation von Genen

    Tiere bestehen in der Regel aus hunderten von Zelltypen – doch wie sich diese zelluläre Komplexität im Lauf der Evolution entwickelt hat, ist nach wie vor nicht geklärt. Genau dieser Frage hat sich ein Forschungsteam rund um den Entwicklungsbiologen Ulrich Technau von der Universität Wien angenommen. Die Ergebnisse seiner Studie wurden aktuell im renommierten Fachjournal Nature Communications veröffentlicht. Dabei fanden die Forscher*innen heraus, dass verschiedene Muskelzelltypen in der Seeanemone durch eine Vielzahl von Genduplikationen und nachfolgenden Diversifizierungen entstanden sind. Außerdem entdeckte das Forschungsteam einen wahrscheinlichen evolutionären Ursprung von Herzmuskelzellen.

    Seit langem beschäftigt die Wissenschaft die Frage, welche Mechanismen dem hohen Grad an zellulärer Komplexität verschiedener Organismen zugrunde liegen. Mögliche Antworten liefert die Entwicklungsbiologie durch das Studium von Zelltypen, die allen Tieren gemein sind – wie z.B. den Muskelzellen. Von diesen Zellen gibt es verschiedene Arten – bei Wirbeltieren z.B. den quergestreiften Herzmuskel, die quergestreifte Skelettmuskulatur und die glatte Muskulatur, die beispielsweise den Darm auskleidet.

    Seeanemonen – komplexer als gedacht

    Auch Seeanemonen, die zu den evolutionär ältesten und somit "einfachsten" Tierstämmen gehören, besitzen Muskeln, die jedoch anatomisch alle sehr ähnlich aussehen. Durch eine relativ neue molekularbiologische Methode, die Einzel-Zell-Sequenzierung, konnte die Gruppe um Ulrich Technau von der Universität Wien nun aber bestätigen, dass es in Seeanemonen tatsächlich vier verschiedene Muskelzell-Subtypen gibt. Diese lassen sich wiederum in zwei Hauptkategorien – schnell-kontrahierende und langsam-kontrahierende Muskeln – unterteilen, ähnlich wie es beim Menschen schnelle und langsame Muskeln gibt. Schnelle und langsame Muskeln unterscheiden sich auf molekularbiologischer Ebene durch einen ganzen Satz an Strukturproteinen, die jeweils durch Genduplikationen entstanden und vermutlich für die unterschiedlichen Eigenschaften verantwortlich sind.

    Genetische Regulation liefert Hinweis auf gemeinsamen evolutionären Ursprung

    Das Forschungsteam ging als nächstes der Frage nach, wie die Entstehung und Differenzierung dieser vier Muskelzell-Subtypen reguliert wird. "Erstaunlicherweise sind in den langsamen Muskeln Regulator-Gene aktiv, die beim Menschen und bei Fliegen auch bei der Entwicklung der Herzmuskelzellen eine Rolle spielen. Dies weist auf einen gemeinsamen evolutionären Ursprung von Herzmuskelzellen sowie den langsamen Muskeln der Seeanemonen hin", betont Entwicklungsbiologin Alison Cole, Erstautorin der Studie. Die Entwicklung der beiden schnellen Muskeln der Seeanemonen wird hingegen von Schwestergenen reguliert, die man nur bei ihnen findet und die dort durch Genduplikation entstanden sind.

    Die Studie zeigt, dass selbst einfach anmutende Tiere bereits eine höhere Komplexität als erwartet haben können und dass bei dieser Diversifizierung von Zelltypen Genduplikationen eine bedeutende Rolle spielen.


    Contact for scientific information:

    Univ.-Prof. Dipl.-Biol. Dr. Ulrich Technau
    Department für Neurowissenschaften und Entwicklungsbiologie
    Universität Wien
    1030 - Wien, Djerassiplatz 1
    +43-1-4277-57000
    +43-664-8175529
    ulrich.technau@univie.ac.at
    www.univie.ac.at


    Original publication:

    Alison G. Cole, Stefan M. Jahnel, Sabrina Kaul, Julia Steger, Julia Hagauer, Andreas Denner, Patricio Ferrer Murguia, Elisabeth Taudes, Bob Zimmermann, Robert Reischl, Patrick R. H. Steinmetz & Ulrich Technau. Muscle cell-type diversification is driven by bHLH transcription factor expansion and extensive effector gene duplications. Nature Communications (2023).
    DOI: 10.1038/s41467-023-37220-6
    https://doi.org/10.1038/s41467-023-37220-6


    More information:

    https://medienportal.univie.ac.at/media/aktuelle-pressemeldungen/detailansicht/a...


    Images

    Ein lebender Nematostella-Polyp, der doppelt transgen ist, mit einem roten Label für das Muskelgen Myosin Heavy Chain und einem grünen Label für das neuronale Aktin.
    Ein lebender Nematostella-Polyp, der doppelt transgen ist, mit einem roten Label für das Muskelgen M ...
    Ulrich Technau
    Ulrich Technau

    Ein einzelner Nematostella-Polyp. © Yulia Kraus
    Ein einzelner Nematostella-Polyp. © Yulia Kraus
    Yulia Kraus
    Yulia Kraus


    Criteria of this press release:
    Journalists
    Biology, Medicine, Zoology / agricultural and forest sciences
    transregional, national
    Research results, Scientific Publications
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).