idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
08/16/2023 09:46

Magnonic Computing: Schnellere Spinwellen könnten neuartige Rechensysteme möglich machen

Theresa Bittermann Öffentlichkeitsarbeit
Universität Wien

    Durchbruch bei Forschung zu neuartigem energieeffizientem Computer

    Auf der ganzen Welt wird an Alternativen zu unserer derzeitigen elektronischen Computertechnik geforscht, denn elektronenbasierte Systeme haben Grenzen. Aus dem Bereich der Magnonik, ein wissenschaftliches Feld aus der Physik, das sich mit bestimmten, magnetischen Phänomenen befasst, ergibt sich eine neue Art der Informationsübertragung: Statt des Elektronenaustauschs könnten die in magnetischen Medien erzeugten Wellen zur Übertragung genutzt werden, allerdings ist magnonbasierte Datenverarbeitung bis dato (zu) langsam. Wissenschafter*innen der Universität Wien haben nun eine bedeutende neue Methode entdeckt: Wenn man die Intensität erhöht, werden diese sogenannten Spinwellen kürzer und schneller – ein weiterer Schritt in Richtung Magnon-Computer. Die Ergebnisse wurden in der renommierten Zeitschrift Science Advances veröffentlicht.

    Die Magnonik ist ein relativ neues Forschungsfeld im Bereich des Magnetismus. Eine zentrale Rolle dabei spielen Spinwellen: Eine lokale Störung in der magnetischen Ordnung eines Magneten kann sich wellenförmig über ein Material ausbreiten. Diese Wellen werden als Spinwellen und die zugehörigen Quasi-Teilchen als Magnonen bezeichnet. Sie tragen Informationen in Form von Spindrehimpulsen weiter. Aufgrund dieser Eigenschaft können sie als stromsparende Datenträger in kleineren und energieeffizienten Computern der Zukunft eingesetzt werden. Die Haupt-Herausforderung in der Magnonik ist die Wellenlänge. Je größer sie ist, desto langsamer sind magnonbasierte Datenverarbeitungseinheiten. Bislang konnte die Wellenlänge nur mit sehr komplexen Hybridstrukturen oder einem Synchrotron verkürzt werden. Die Forschungsgruppe "Nanomagnetismus und Magnononik" der Universität Wien hat gemeinsam mit Kolleg*innen aus Deutschland, Tschechien, der Ukraine und China eine einfachere Alternative entwickelt. Erstautor Qi Wang machte nach monatelanger Arbeit im Labor für Brillouin-Lichtstreuungsspektroskopie an der Fakultät für Physik der Universität Wien die entscheidende Beobachtung: Wenn man die Intensität erhöht, werden die Spinwellen kürzer und schneller – eine bahnbrechende Methode für magnonisches Rechnen.

    Der Co-Autor der Studie und Leiter des Wiener NanoMag-Teams, Andrii Chumak, erklärt die Entdeckung mit einer Metapher: "Es ist hilfreich, sich die Methode mit Licht vorzustellen. Wenn man die Wellenlänge des Lichts ändert, ändert sich seine Farbe. Ändert man jedoch die Intensität, ändert sich nur die Leuchtkraft. In diesem Fall haben wir einen Weg gefunden, die Farbe zu ändern, indem wir die Intensität der Spinwellen ändern. Dieses Phänomen ermöglichte es uns, viel kürzere und viel bessere Spinwellen anzuregen", so Chumak.

    Die derzeitige Wellenlänge, die mit diesem System gefunden wurde, liegt bei etwa 200 Nanometern. Laut numerischen Simulationen wäre es möglich, sogar noch kleinere Wellenlängen anzuregen, zum jetzigen Zeitpunkt ist es jedoch sehr schwierig, diese Größenordnungen anzuregen oder zu messen.

    Die Amplituden der Spinwellen sind auch für künftige magnetische integrierte Schaltungen von entscheidender Bedeutung. Das entdeckte System weist eine selbsthemmende nichtlineare Verschiebung auf, was bedeutet, dass die Amplitude der angeregten Spinwellen konstant ist. Diese Eigenschaft ist für integrierte Schaltungen sehr relevant, da sie es ermöglicht, dass verschiedene magnetische Elemente mit der gleichen Amplitude zusammenarbeiten. Dies wiederum ist von grundlegender Bedeutung für den Aufbau komplexerer Systeme und für die Verwirklichung des weit entfernten Ziels eines auf Magnonen basierenden Computers. Das Endziel, ein voll funktionsfähiger Magnon-Computer, ist noch nicht erreicht. Trotzdem bringt dieser solide Meilenstein die Forscher*innen ihrem Ziel ein gutes Stück näher.


    Contact for scientific information:

    Univ.-Prof. Dr. habil. Andrii Chumak
    Nanomagnetismus und Magnonik, Universität Wien
    Boltzmanngasse 5, 1090 Wien
    T +43-1-4277-73910
    andrii.chumak@univie.ac.at
    www.univie.ac.at


    Original publication:

    Publikation in Science Advances:
    Deeply nonlinear excitation of self-normalized short spin waves
    Qi Wang, Roman Verba, Björn Heinz, Michael Schneider, Ondřej Wojewoda, Kristýna Davídková, Khrystyna Levchenko, Carsten Dubs, Norbert J. Mauser, Michal Urbánek, Philipp Pirro, Andrii V. Chumak
    DOI: 10.1126/sciadv.adg4609
    https://doi.org/10.1126/sciadv.adg4609


    More information:

    https://medienportal.univie.ac.at/media/aktuelle-pressemeldungen/detailansicht/a...


    Images

    Criteria of this press release:
    Journalists, Scientists and scholars
    Electrical engineering, Physics / astronomy
    transregional, national
    Research results, Transfer of Science or Research
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).