idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
01/23/2024 08:29

Futuristische Formwandler

Nina Reckendorf Stabsstelle Presse, Kommunikation und Marketing
Universität Paderborn

    Forschungsprojekt der Universität Paderborn entwickelt algorithmische Grundlagen für neuartige programmierbare Materie

    Der Stoff, aus dem Science-Fiction-Filme sind: Seit Jahrzehnten inspiriert sogenannte „programmierbare Materie“ Filmemacher*innen und Kinobegeisterte weltweit. Sie ist in der Lage, ihre Gestalt und Eigenschaften wie z. B. Farbe, Form und Elastizität entweder eigenständig oder basierend auf äußeren Einflüssen zu verändern. Als Gegenstand der Forschung ist programmierbare Materie auch für Wissenschaftler*innen von Interesse. Bisherige Ansätze weisen allerdings eine Reihe von Unzulänglichkeiten auf. Wissenschaftler*innen der Universität Paderborn arbeiten deshalb daran, die zugrundeliegenden Modelle und Algorithmen zu verbessern, die die futuristischen Formwandler möglich machen sollen. Das Forschungsprojekt CIRPROM („Algorithmische Grundlagen für schaltkreisbasierte programmierbare Materie“), geleitet von Prof. Dr. Scheideler, wird bis 2027 von der Deutschen Forschungsgemeinschaft (DFG) mit rund 350.000 Euro gefördert.

    „In Filmen gibt es Lebewesen, Roboter und sonstige Konstrukte, die ihre Form und ihr Aussehen flexibel anpassen können. Technologisch sind wir aber noch weit davon entfernt, programmierbare Materie mit solchen Eigenschaften zu realisieren“, erklärt Scheideler, Informatiker an der Universität Paderborn. „Um herauszufinden, welche Technologie am vielversprechendsten ist, müssen zunächst geeignete Modelle entworfen und auf ihre Fähigkeiten bezüglich der wichtigsten Anwendungen für programmierbare Materie untersucht werden. Hier hat sich zwar in den letzten Jahren viel getan, allerdings sind die bisherigen Ansätze entweder nicht universell einsetzbar oder einfach viel zu langsam, was die Formwandlung angeht“, so der Wissenschaftler weiter.

    „Unsere Vision der programmierbaren Materie baut auf dem sogenannten ‚Amoebot-Modell‘ auf, das wir vor rund zehn Jahren vorgeschlagen und seitdem ständig weiterentwickelt haben. Als Vorbild haben wir Amöben genommen“, sagt Scheideler. Das sind primitive Einzeller, die sich mittels Expansionen und Kontraktionen fortbewegen. Das Team um den Informatiker modelliert die Amoebots als einfache Roboter auf Mikro- oder Nano-Ebene, die sich mit anderen Amoebots verbinden und mit diesen interagieren können. Dadurch können sie komplexe Formen bilden. Scheideler: „Durch kürzliche Erweiterungen des Modells sind die Roboter nun in der Lage, innerhalb dieser Formen Strukturen aufzubauen, die an die Funktionsweise von Nervenbahnen und Muskeln erinnern. So können Informationen ausgetauscht und Bewegungen synchronisiert werden, was dazu führt, dass rapide Formwandlungen und -heilungen jetzt prinzipiell möglich sind.“

    Zwar haben die Wissenschaftler*innen bereits eine Reihe von Problemen gelöst, Hürden gibt es aber weiterhin: „Die schnelle Bestimmung eines Amoebots, der die Koordination der anderen Amoebots übernimmt, und die rapide Kompassanpassung, damit sich die Bots im Klaren darüber sind, in welche Richtung eine synchronisierte Bewegung zu erfolgen hat, sind bereits möglich. Große Herausforderungen sind aber nach wie vor, wie durch eine gezielte Abfolge von Bewegungsvorgängen eine Zielform am schnellsten erreicht werden kann, wie beschädigte Formen möglichst schnell erkannt und repariert werden können und wie Energie am effektivsten dorthin geleitet werden kann, wo sie für die Formtransformationen benötigt wird. Solche Algorithmen sind für eine spätere technische Umsetzung essenziell“, so Scheideler weiter.

    Zusätzlich zur Formwandlung könnten die Bots auch zur Heilung innerer Verletzungen im medizinischen Bereich oder bei der strukturellen Überwachung und Reparatur von Maschinen und Gebäuden zum Einsatz kommen: „Die Anwendungsmöglichkeiten sind riesig. Das Thema ist für die Industrie, die Medizin und die Gesellschaft im Allgemeinen von großer Bedeutung“, hält Scheideler fest. Bis die Bots aber tatsächlich einsatzbereit sind, wird es wohl noch einige Jahrzehnte dauern.

    Der Wissenschaftler, der am Institut für Informatik in Paderborn das Fachgebiet „Theorie verteilter Systeme“ leitet, beschäftigt sich in seiner Forschung schon seit vielen Jahren mit der Entwicklung von Modellen, Methoden und Architekturen für verteilte Systeme, wie es das Amoebot-Modell ist. Neben der klassischen Entwicklung verteilter Algorithmen und Datenstrukturen geht es dabei auch um Methoden selbststabilisierender und -optimierender Systeme.


    Contact for scientific information:

    Prof. Dr. Christian Scheideler, Institut für Informatik der Universität Paderborn, Fon: +49 5251 60-6728, E-Mail: scheideler@upb.de


    Images

    Criteria of this press release:
    Journalists, Scientists and scholars
    Information technology
    transregional, national
    Research projects
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).