idw - Informationsdienst
Wissenschaft
HU research team develops foundations for sustainable battery technology
Electric vehicles and portable electronic devices such as laptops and mobile phones are unthinkable without lithium-ion batteries. The problem: highly toxic materials such as cobalt are often used for the cathodes of these batteries, which jeopardise the environment and the health of people in the countries where they are mined. In addition, the reserves of these metals are very limited.
Sustainable and powerful with sulphur
A research team at Humboldt-Universität zu Berlin (HU) has now achieved a decisive breakthrough in battery technology. The team, led by Prof Dr Michael J. Bojdys, has developed a high-performance sulphur-based cathode. Sulphur is a sustainable alternative to the materials commonly used in lithium-ion batteries because it is less toxic and - unlike cobalt - is abundant. However, the storage capacity of batteries in which sulphur is used as a cathode material has so far declined rapidly. The researchers have now been able to solve this problem. The results of the study have been published in the renowned journal Angewandte Chemie.
"Our development paves the way for sulphur electrodes as a viable alternative to conventional metal-based cathodes. It could fundamentally change the way we store and use energy and represents an important step towards a more sustainable future," explains Prof Bojdys.
Solving the sulphur-shuttle problem using polymer chemistry
With sulphur-based cathodes, the mobility of the sulphur has so far led to a degradation of the battery - an effect known as the sulphur-shuttle. In the newly developed solution, the sulphur is encapsulated in a special microporous polymer network so that the sulphur particles are retained. This battery technology not only increases the performance and service life of batteries but also avoids the problem of scarce resources.
Prof Dr Michael J. Bojdys is an expert in sustainable energy materials and, as part of the GreenCHEM funding initiative of the German Federal Ministry of Education and Research, is helping to transform the chemical industry in the Berlin capital region by combining science and industry to create a circular economy based on sustainable raw materials.
Further information
Research article: Guiping Li, Ye Liu, Thorsten Schultz, Moritz Exner, Ruslan Muydinov, Hui Wang, Kerstin Scheurell, Jieyang Huang, Norbert Koch, Paulina Szymoniak, Nicola Pinna, Philipp Adelhlem, Michael Janus Bojdys: One-pot Synthesis of High-capacity Sulfur Cathodes via In-situ Polymerization of a Porous Imine-based Polymer. Angew. Chem. Int. Ed. 2024, e202400382.
Link to publication: https://onlinelibrary.wiley.com/doi/10.1002/anie.202400382
Prof Dr Michael J. Bojdys
Department of Chemistry of Humboldt-Universität zu Berlin
Email: michael.janus.bojdys@hu-berlin.de
Barbora Balcarova
Department of Chemistry of Humboldt-Universität zu Berlin
Email: barbora.balcarova@hu-berlin.de
Criteria of this press release:
Journalists, Scientists and scholars
Chemistry
transregional, national
Research results
English
You can combine search terms with and, or and/or not, e.g. Philo not logy.
You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).
Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.
You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).
If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).