idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
09/04/2024 10:49

Mathematischer Beweis: Fünf Satelliten für präzise Navigation nötig

Julia Rinner Corporate Communications Center
Technische Universität München

    Wie verläuft der kürzeste Weg zur nächsten Haltestelle oder zum verabredeten Treffpunkt? Global Positioning Systeme (GPS) sind für die meisten eine Selbstverständlichkeit geworden. Bisher gab es allerdings nur Vermutungen darüber, wie viele GPS-Satelliten wirklich benötigt werden, um die Position eines Handys oder eines anderen Navigationsgeräts exakt zu bestimmen. Forschende der Technischen Universität München (TUM) und der Eindhoven University of Technology (TU/e) haben nun den Beweis erbracht, dass ab einer Anzahl von fünf Satelliten der genaue Standort in den allermeisten Fällen bestimmt werden kann. Derzeit ist in der Regel nur der Kontakt zu vier Satelliten sichergestellt.

    In der Regel geben uns Global Positioning Systeme bis auf weniger Meter genau unseren Standort an. Jeder kennt aber auch Situationen, in denen die Ortung nur auf einige hundert Meter genau angezeigt wird oder der Standort sogar falsch ist. Ein Grund hierfür kann die geringe Anzahl oder ungünstige Anordnung der Satelliten sein, zu denen das Navigationsgerät gerade „Sichtkontakt“ hat.

    Wie funktioniert GPS?

    GPS-Satelliten sind mit einer extrem präzisen Atomuhr ausgestattet und kennen ihre Position zu jeder Zeit. Sie senden die Uhrzeit und ihren Standort kontinuierlich über Funkwellen. Ein Handy oder ein anderes Navigationsgerät empfängt diese Signale von allen Satelliten, zu denen es Sichtkontakt hat. Die Differenz zwischen der Ankunftszeit auf der lokalen Uhr des Empfängers und der von der Satellitenuhr aufgezeichneten Sendezeit entspricht der Zeit, die das Signal vom Satelliten zum Empfänger benötigt. Da sich Funkwellen mit Lichtgeschwindigkeit bewegen, errechnet sich hieraus die zurückgelegte Strecke. Aus den Positionen der Satelliten und der zurückgelegten Strecke wird über ein Gleichungssystem die Position des Empfängers bestimmt.

    Nicht berücksichtigt wird bei dieser vereinfachten Darstellung, dass die lokale Uhr des Empfängers keine Atomuhr ist. Geht diese nur eine Millionstel Sekunde falsch, entsteht bei der Positionsbestimmung eine Ungenauigkeit von mindestens 300 Metern. Das GPS-Problem besteht nun darin, dass das Handy oder ein anderes Navigationsgerät zusammen mit dem Standort auch die genaue Zeit bestimmen muss – bekannt aus der Relativitätstheorie als sogenannte Raumzeit.

    Ist die Anzahl der Satelliten, die sich in Sichtkontakt befinden, zu gering, funktioniert das System nicht mehr zuverlässig und liefert mehrere Lösungen – also unterschiedliche Orte, an denen sich der Empfänger befinden könnte. Dann kann die Situation auftreten, dass beispielsweise ein Handy gar keinen oder den falschen Standort angibt. Bislang wurde nur vermutet, wie viele Satelliten benötigt werden, um für das GPS-Problem eindeutige Lösungen zu erhalten.

    Fünf Satelliten für eine genaue Standortbestimmung

    Mireille Boutin, Professorin für diskrete Algebra und Geometrie an der TU/e und Gregor Kemper, Professor für algorithmische Algebra an der TUM ist es nun gelungen, mathematisch zu beweisen, dass ab einer Anzahl von fünf Satelliten die exakte Position des Empfängers in den allermeisten Fällen eindeutig bestimmt werden kann. „Auch wenn das schon lange vermutet wurde, hat es bisher niemand geschafft, einen Beweis zu finden. Das war auch nicht ganz einfach: Tatsächlich haben wir über ein Jahr an dem Problem gearbeitet, bis wir soweit waren“, sagt Kemper. Aktuell ist auf der Erde sichergestellt, dass überall und zu jedem Zeitpunkt vier Satelliten in Sichtkontakt stehen. „Bei nur vier Satelliten scheint es ganz grob gesprochen so zu sein, dass die Wahrscheinlichkeit für eine eindeutige Lösbarkeit des GPS-Problems bei 50 Prozent liegt. Das zu beweisen ist eines unserer nächsten Projekte“, so Kemper. Bei drei oder weniger Satelliten im Sichtbereich funktioniert GPS-Navigation definitiv nicht.

    Geometrie und Eindeutigkeit

    Gelungen ist den Forschenden der Beweis, indem sie das GPS-Problem geometrisch charakterisierten. Sie fanden heraus, dass die Position des Empfängers nicht eindeutig bestimmt werden kann, wenn die Satelliten auf einem sogenannten zweischaligen Rotationshyperboloid liegen. Hierbei handelt es sich um eine gekrümmte Fläche, die in alle Richtungen geöffnet ist. Obwohl dies zunächst ein theoretisches Ergebnis ist, hat es praktische Auswirkungen, denn es ermöglicht, Ungenauigkeiten in der Positionsbestimmung besser zu verstehen.


    Contact for scientific information:

    Prof. Dr. Gregor Kemper
    Technische Universität München
    Professur für Algorithmische Algebra
    kemper@tum.de


    Original publication:

    M. Boutin and G. Kemper. „Global positioning: The uniqueness question and a new solution method“. Advances in Applied Mathematics (2024).


    More information:

    https://www.tum.de/aktuelles/alle-meldungen/pressemitteilungen/details/fuenf-sat...


    Images

    Gregor Kemper, Professor für Algorithmische Algebra
    Gregor Kemper, Professor für Algorithmische Algebra
    Andreas Heddergott / TUM
    © Andreas Heddergott / TUM Verwendung frei fuer die Berichterstattung ueber die TU Muenchen unter Nennung des Copyright


    Criteria of this press release:
    Journalists
    Mathematics
    transregional, national
    Research results, Scientific Publications
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).