idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
09/25/2024 10:28

Wie KI hilft, die Forschungslücke zwischen Tier und Mensch zu schließen

Medizinische Fakultät Anne Grimm Stabsstelle Universitätskommunikation / Medienredaktion
Universität Leipzig

    Die Übertragbarkeit von Ergebnissen aus Tiermodellen auf den Menschen ist immer noch eine zentrale Herausforderung in der medizinischen Forschung. Die sogenannte „translationale Lücke“ verhindert oft eine erfolgreiche Umsetzung vielversprechender präklinischer Erkenntnisse in klinische Anwendungen. In einer gemeinsamen Forschungsarbeit der Universität Leipzig und der Charité – Universitätsmedizin Berlin haben Wissenschaftler:innen mit Hilfe von künstlicher Intelligenz einen Ansatz entwickelt, der molekulare Mechanismen der COVID-19-Erkrankung bei Mensch und Tier vergleicht. Die Ergebnisse sind aktuell im Journal „The Lancet – eBioMedicine“ veröffentlicht worden.

    Die Übertragung von Erkenntnissen aus Tiermodellen auf den Menschen ist für die Entschlüsselung von Krankheitsmechanismen und die Entwicklung präziser therapeutischer Strategien unerlässlich. Die hochauflösende Methode der Einzelzell-RNA-Sequenzierung ermöglicht es, Ähnlichkeiten und Unterschiede zwischen Mensch und Tiermodell auf molekularer und zellulärer Ebene mit beispielloser Genauigkeit aufzudecken. Es gibt aber nur wenige computergestützte Methoden, die einen detaillierten Abgleich dieser wertvollen Daten ermöglichen. Wissenschaftler:innen des Instituts für Medizinische Informatik, Statistik und Epidemiologie und des ScaDS.AI der Universität Leipzig sowie der Klinik für Pneumologie, Beatmungsmedizin und Intensivmedizin der Charité haben in einer aktuellen Forschungsarbeit ein auf neuronale Netze gestütztes KI-Modell für die COVID-19-Erkrankung geschaffen. Dafür nutzten sie Blutdaten von Menschen sowie verschiedener Hamsterarten mit mittelschwerem oder schwerem COVID-19 und glichen diese auf molekularer Ebene ab.

    „Wir haben gezeigt, dass die translationale Lücke zwischen Tiermodellen und Patientinnen und Patienten durch die Integration von robusten Deep-Learning-Modellen in Kombination mit biologisch fundierten Analysen verkleinert werden kann. Die KI lernt systematisch die molekularen Unterschiede zwischen Tier und Mensch und kann dann molekulare Muster des kranken Tiers in entsprechende Muster des Menschen übersetzen, also gewissermaßen die Daten des Tiermodells humanisieren“, erklärt Dr. Holger Kirsten, Wissenschaftler am Institut für Medizinische Informatik, Statistik und Epidemiologie der Universität Leipzig und Korrespondenzautor der aktuellen Studie.
    Ergebnisse stehen im Einklang mit Daten aus der Pandemie

    „Wir konnten zeigen, dass sich die Aktivierung des Immunsystems bei moderaten COVID-19-Verläufen zwischen Syrischen Hamstern und Menschen stark ähnelt, insbesondere wenn man Monozyten betrachtet“, sagt Dr. Geraldine Nouailles, Arbeitsgruppenleiterin an der Klinik für Pneumologie, Beatmungsmedizin und Intensivmedizin der Charité und ebenfalls Korrespondenzautorin der Studie. Monozyten sind Vorläuferzellen der sogenannten Makrophagen, der Fresszellen des Immunsystems. „Wenn wir schwere Verläufe untersuchen wollen, schauen wir dagegen am besten auf die Neutrophilen von Roborovski-Hamstern“, sagt die Wissenschaftlerin. „Diese besonders schnell reagierenden Immunzellen verhalten sich bei dieser Hamsterart und dem Menschen besonders ähnlich.“ Die Ergebnisse stehen im Einklang mit Pandemiebeobachtungen, die anhand der Daten von Patient:innen gewonnen wurden.

    „Solche Vergleiche von Einzelzell-RNA-Sequenzierungsdaten sind gut geeignet, um Ähnlichkeiten und Unterschiede auf molekularer und zellulärer Ebene bei Tier und Mensch aufzudecken, die weit über die COVID-19-Forschung hinausgehen“, sagt Holger Kirsten. Geraldine Nouailles resümiert: „Unsere entwickelte Methodik ermöglicht eine bessere Identifikation geeigneter Tiermodelle für menschliche Erkrankungen, beziehungsweise welche Stadien der Erkrankung sich einander entsprechen. Das kann die Entwicklung und Testung therapeutischer Interventionen verbessern und den Translationsprozess von präklinischen zu klinischen Studien optimieren.“

    In der Zukunft plant das Leipziger Forschungsteam, diese Methodik weiterzuentwickeln und auf andere Tiermodelle anzuwenden, die für die Untersuchung der Wirksamkeit und Sicherheit von immunmodulierenden Therapien im Menschen verwendet werden. Ein Beispiel hierfür ist die CAR-T-Zelltherapie, eine vielversprechende Behandlungsmethode für bestimmte Krebsarten.

    Über die Studie:
    Dr. Geraldine Nouailles und Dr. Holger Kirsten haben die Untersuchung gemeinsam geleitet. Erstautoren der Studie waren Vincent D. Friedrich (ScaDS.AI, Universität Leipzig) und Peter Pennitz (Klinik für Pneumologie, Beatmungsmedizin und Intensivmedizin, Charité). Die Arbeit wurde im Rahmen des e:Med-Verbundprojekts CAPSyS vom Bundesministerium für Bildung und Forschung gefördert.


    Contact for scientific information:

    Dr. rer. nat. Holger Kirsten
    Institut für Medizinische Informatik, Statistik und Epidemiologie (IMISE)
    Medizinische Fakultät, Universität Leipzig
    Haertelstraße 16-18, 04107 Leipzig, Germany
    E-Mail: holger.kirsten@imise.uni-leipzig.de
    Webseite:https://www.imise.uni-leipzig.de/

    Dr.-Ing. Geraldine Nouailles
    Klinik für Pneumologie, Beatmungsmedizin und Intensivmedizin mit dem Arbeitsbereich Schlafmedizin
    Fächerverbund für Infektiologie, Pneumologie und Intensivmedizin
    Charité – Universitätsmedizin Berlin
    Charitéplatz 1, 10117 Berlin, Deutschland
    E-mail: geraldine.nouailles@charite.de


    Original publication:

    Originalpublikation in eBioMedicine: Neural Network-Assisted Humanization of COVID-19 Hamster Transcriptomic Data Reveals Matching Severity States in Human Disease Cross-species disease matching via neural networks. DOI: https://doi.org/10.1016/j.ebiom.2024.105312


    Images

    Wissenschaftler:innen haben in einer aktuellen Forschungsarbeit ein auf neuronale Netze gestütztes KI-Modell für die COVID-19-Erkrankung geschaffen.
    Wissenschaftler:innen haben in einer aktuellen Forschungsarbeit ein auf neuronale Netze gestütztes K ...

    Symbolbild: Colourbox


    Criteria of this press release:
    Journalists, Scientists and scholars
    Information technology, Medicine
    transregional, national
    Research results, Transfer of Science or Research
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).