idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
11/20/2024 09:04

A new puzzle piece for string theory research

Dr. Kathrin Kottke Stabsstelle Kommunikation und Öffentlichkeitsarbeit
Universität Münster

    Dr. Ksenia Fedosova from the Cluster of Excellence Mathematics Münster, along with an international research team, has proven a conjecture in string theory that physicists had proposed regarding certain equations. Their findings were published in the journal Proceedings of the National Academy of Sciences (PNAS).

    String theory aims to explain all fundamental forces and particles in the universe – essentially, how the world operates on the smallest scales. Though it has not yet been experimentally verified, work in string theory has already led to significant advancements in mathematics and theoretical physics. Dr. Ksenia Fedosova, a researcher at the Mathematics Münster Cluster of Excellence at the University of Münster has, along with two co-authors, added a new piece to this puzzle: They have proven a conjecture related to so-called 4-graviton scattering, which physicists proposed for certain equations. The results have been published in the journal "Proceedings of the National Academy of Sciences" (PNAS).

    Gravitons are hypothetical particles responsible for gravity. "The 4-graviton scattering can be thought of as two gravitons moving freely through space until they interact in a 'black box' and then emerge as two gravitons," explains Ksenia Fedosova, providing the physical background for her work. "The goal is to determine the probability of what happens in this black box." This scattering probability is described by a function that depends on information about all four gravitons involved. "While the exact form of this function is not known, we can approximate this scattering amplitude for specific types of interactions within the black box, as long as the energies involved in the process are relatively low."

    To calculate this approximation, its dependency on another variable must also be considered, namely the so-called string coupling constant, which describes the strength of interactions between strings. "In our research setup, its domain of definition connects string theory and number theory," explains Ksenia Fedosova. The string coupling constant is represented by a shape of a torus or, topologically, a donut – which in this case is used to compactify invisible dimensions. For number theorists, the string coupling constant, or torus, is represented by a point on a well-known modular surface. The latter is a curved 2-dimensional surface with two conical and one cusp singularity used in mathematics and physics to analyse specific number patterns and geometric structures.

    This is how functions defined on a modular surface arise in the context of string theory. Ksenia Fedosova, Prof. Dr. Kim Klinger-Logan and Dr. Danylo Radchenko investigated these functions, which must satisfy certain partial differential equations, and found the correct homogeneous part of some functions that appear in 4-graviton scattering. The homogeneous part is frequently used in mathematics to understand the fundamental structure or behavior of a function.

    "To simplify the process, we solved the partial differential equations on an ‘unfolded’ version of the modular surface and then investigated whether it was possible to ‘fold’ the solution back," the mathematician explains their approach. For this, Ksenia Fedosova and her collaborators needed to evaluate infinite sums that involve the so-called divisor functions. The first example of these sums was found by physicists, and based on numerical evaluations, it was conjectured that they vanish. The research team discovered further examples of such sums. "Interestingly, however, other sums did not necessarily vanish as physicists had expected. Our results suggest that there should be a better choice for a starting partial differential equation than the one currently considered by physicists."


    Contact for scientific information:

    Dr. Ksenia Fedosova
    Mathematisches Institut | University of Münster
    E-Mail: kfedosov@uni-muenster.de


    Original publication:

    Ksenia Fedosova, Kim Klinger-Logan, Danylo Radchenko (2024): Convolution identities for divisor sums and modular forms. Proceedings of the National Academy of Sciences (PNAS), Vol. 121, No. 44, DOI: https://doi.org/10.1073/pnas.2322320121


    Images

    Dr. Ksenia Fedosova presents an example of the equations from the work published in PNAS.
    Dr. Ksenia Fedosova presents an example of the equations from the work published in PNAS.
    Victoria Liesche
    Uni MS - Victoria Liesche


    Criteria of this press release:
    Journalists
    Mathematics
    transregional, national
    Research results
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).