idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
09/19/2025 11:02

Wie Synapsen zusammenhalten

Eva Schissler Kommunikation und Marketing
Universität zu Köln

    Ein Kölner Forschungsteam hat eine molekulare Perspektive auf die Architektur von Synapsen entwickelt. Ihre Studie zeigte, dass ein Protein im Gehirn flexible Filamente bildet und damit als wesentlicher Baustein inhibitorischer Synapsen dient / Veröffentlichung in „Nature Communications“

    Forschende des Instituts für Biochemie der Universität zu Köln haben eine Schlüsselerkenntnis über die molekulare Grundlage der Synapsenbildung im zentralen Nervensystem gewonnen. Sie untersuchten inhibitorische Synapsen, die sogenannten „Bremsen“ in unserem Gehirn, die dafür sorgen, dass ein Signal nicht mehr weitergeleitet wird. Konkret untersuchten die Forschenden das Protein Gephyrin, das die eine Hälfte dieser Synapsen, die sogenannte postsynaptische Dichte, stabilisiert. Die in der Fachzeitschrift Nature Communications veröffentlichte Studie „Gephyrin filaments represent the molecular basis of inhibitory postsynaptic densities“ beschreibt eine bisher unbekannte Form der molekularen Interaktion im Protein Gephyrin, das durch diese Interaktion längliche Filamente bildet. Diese Filamente sind die organisatorische Grundlage für die Bildung der Postsynapse, was wiederum zur Bildung von Milliarden von Synapsen führt, die das Gehirn für quasi alle komplexen Funktionen der Kommunikation nutzt.

    Unter der Leitung von Professor Dr. Günter Schwarz und Professor Dr. Elmar Behrmann verwendete das Team modernste Kryo-Elektronenmikroskopie, um die dreidimensionale Struktur von Gephyrin sichtbar zu machen. Ein überraschendes Ergebnis war, dass eine Domäne von Gephyrin, die an den Neurorezeptor bindet und Dimere (größere Strukturen aus einem Proteinpaar) bildet, verlängerte Filamente aufbaut. Bislang ging die Forschung davon aus, dass Proteine in phasengetrennten Kondensaten ungeordnet waren, doch Strukturen unter dem Mikroskop zeigten einen hohen Grad an Organisation. Zusätzlich zu dieser strukturellen Arbeit ergaben In-vitro-Experimente und Arbeiten an isolierten Zelllinien, dass diese Filamente für die Synapsenbildung erforderlich sind und erklärten, warum bestimmte Mutationen im Gephyrin neurologische Erkrankungen auslösen.

    „Dies ist ein enormer Durchbruch für unser Verständnis der molekularen Bildung inhibitorischer Synapsen“, sagt Hauptautor Günter Schwarz. „Unsere Ergebnisse haben bedeutende Auswirkungen auf die Entwicklung neuer Therapien für neurologische Erkrankungen wie Epilepsie, die mit diesen Synapsen zusammenhängen.“

    Elmar Behrmann, ebenfalls Hauptautor, fügt hinzu: „Durch den Einsatz der Kryo-Elektronenmikroskopie konnten wir die Gephyrin-Filamente in bisher unerreichter Detailgenauigkeit sichtbar machen. Dies hat uns ein tieferes Verständnis der molekularen Mechanismen hinter inhibitorischen Synapsen ermöglicht und neue Wege für die Forschung eröffnet.“

    Erstautor Dr. Arthur Macha, ein Postdoktorand, der in beiden Labors tätig ist, sagt: „Wir waren zunächst überrascht, Z-förmige Schnittstellen zwischen Gephyrinmolekülen in unseren Daten zu finden. Diese Entdeckung schließt die Lücke in unserem Verständnis, wie die Anordnung der Rezeptoren, die Oligomerisierung von Gephyrin und die Synapsenbildung funktionell miteinander verbunden sind.“

    Die Forschung wurde am Institut für Biochemie der Universität zu Köln durchgeführt, das über Expertise in den Bereichen Strukturbiologie, Protein-, Peptid- und Redox-Biochemie verfügt. Das Forschungsteam resümiert: Die Ergebnisse der Studie haben das Potenzial, das Verständnis der molekularen Grundlagen inhibitorischer postsynaptischer Dichten zu revolutionieren und werden die Grundlage für die Analyse der Architektur ganzer Synapsen auf einer neuen molekularen Ebene bilden.


    Contact for scientific information:

    Professor Dr. Elmar Behrmann
    +49 221 470 76300
    elmar.behrmann@uni-koeln.de

    Professor Dr. Günter Schwarz
    49 221 470 6441
    gschwarz@uni-koeln.de


    Original publication:

    https://www.nature.com/articles/s41467-025-63748-w


    Images

    Repräsentatives Kryo-Elektronenmikroskopie-Bild: eine eingefärbte Abbildung der 3D-Struktur von Gephyrin, die aus den Daten berechnet werden konnte.
    Repräsentatives Kryo-Elektronenmikroskopie-Bild: eine eingefärbte Abbildung der 3D-Struktur von Geph ...

    Copyright: Arthur Macha


    Criteria of this press release:
    Journalists, Scientists and scholars, Students
    Biology, Chemistry, Medicine
    transregional, national
    Research results, Scientific Publications
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).