idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
01/15/2026 11:28

The Hidden Risk of Combined Stressors for Soils

Jonas Krumbein Stabsstelle Kommunikation und Marketing
Freie Universität Berlin

    Global change, a term that encompasses climate change and phenomena such as changes in land use or environmental pollution, is putting ecosystems under pressure. Urban soils in particular are susceptible to stressors like heat, drought, road salt, nitrogen deposition, surfactants and microplastics. To date, the impact of these stressors has often been researched individually, with the impact of each stressor measured in isolation. This approach is, however, not representative of real-world scenarios as these factors almost always appear in combination. A new study carried out by researchers at Freie Universität Berlin shows that when these stressors are combined, their impact can change.

    The study, “Global Change Factors Differ in Effect when Acting Alone and in a Multi-Factor Background” was published in Nature Communications. It investigated how stressors including warming, drought, and pollution affect soil health both on their own and when they occur together. The results show that factors that appear neutral or even positive when examined singly can, in combination, degrade soil structure or suppress the activity of microbes that are important for ecosystem functioning. This was especially evident in the case of soil warming. For example, when higher temperatures were considered alone, they were shown to actually boost the activity of microbes involved in stabilizing the soil. However, when higher temperatures occurred together with other stressors, the soils suffered. One possible reason for this is that warmer conditions speed up evaporation, which concentrates harmful substances in the soil water. These concentrated toxins then damage the microbes and lead to less stable soil aggregates – an effect that only shows up in experiments with multiple stressors.

    “Experiments repeatedly show that individual treatments with global change factors such as higher temperatures can have positive effects on soils,” says biologist Rebecca Rongstock, lead author of the paper and doctoral student in the Rillig Group – Ecology of Plants at Freie Universität Berlin’s Department of Biology, Chemistry, Pharmacy. “So why should we still protect our soils from such factors? A key reason is that we simply don’t know how stressors interact when they occur together.” Together with colleagues Huiying Li and Matthias Rillig, Rongstock examined 140 soil samples using a novel experimental setup. The team compared the impact of six combined soil stressors with the impact of combinations that left out one factor at a time. In the experiment the researchers measured, among other things, the activity of soil microbes and the stability of soil aggregates, i.e., the crumbly structures that are essential for ventilation, water infiltration, and microbial life within the soil.

    The study highlights the fact that ecological risks can only be realistically assessed when environmental factors are examined systematically and in combination with each other. Matthias Rillig, soil ecology professor at Freie Universität and senior author of the study, says “If we want to protect ecosystems, the most effective course of action is not necessarily to focus on the factors that show the biggest individual effects. As multiple factors of global change interact almost everywhere, it may be wiser to target the combination of factors that, together, produce the strongest negative outcomes.” At the same time, the research findings point to ways to promote recovery. If we can reduce or eliminate individual stressors – even those that seem harmless or beneficial when considered alone – core soil functions could significantly improve.


    Contact for scientific information:

    Rebecca Rongstock, Rillig Group – Ecology of Plants, Institute of Biology, Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Email: r.rongstock@fu-berlin.de


    Original publication:

    https://doi.org/10.1038/s41467-025-68155-9


    Images

    Experiment investigating the effects of combined global change factors on soil health, carried out in a climate chamber at Freie Universität Berlin.
    Experiment investigating the effects of combined global change factors on soil health, carried out i ...
    Source: Matthias Rillig
    Copyright: Matthias Rillig


    Criteria of this press release:
    Business and commerce, Journalists, Scientists and scholars, all interested persons
    Biology, Environment / ecology, Oceanology / climate
    transregional, national
    Research results
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).