idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
01/17/2020 15:29

Chemists allow boron atoms to migrate

Svenja Ronge Stabsstelle Kommunikation und Öffentlichkeitsarbeit
Westfälische Wilhelms-Universität Münster

    Organic molecules with atoms of the semi-metal boron are important building blocks for synthesis products to produce drugs and agricultural chemicals. However, the conversion of substances commonly used in industry often results in the loss of the valuable boron unit, which can replace another atom in a molecule. Chemists at Münster University now introduce carbon-carbon couplings in which the boron atom is retained. The study has been published in the journal "Chem".

    Organic molecules with atoms of the semi-metal boron are among the most important building blocks for synthesis products that are needed to produce drugs and agricultural chemicals. However, during the usual chemical reactions used in industry, the valuable boron unit, which can replace another atom in a molecule, is often lost. Chemists at the University of Münster have now succeeded in significantly expanding the range of applications of commercially and industrially used boron compounds, so-called allylboronic esters. The study has been published in the scientific journal "Chem".

    Since so-called boronic acid derivatives are very versatile and reliably applicable in their variants, chemists often use them to build up important carbon-carbon couplings (C-C couplings). The most important process using boronic acid derivatives is the Nobel Prize-winning Suzuki-Miyaura coupling. Also widely used in synthesis are the so-called allylboronic esters, which also belong to this class of boron compounds.

    In their current study, the chemists headed by Prof. Armido Studer of the Organic Chemical Institute at Münster University are now presenting C-C couplings in which the boron unit from the starting material is retained in the product. The scientists use methods of so-called radical chemistry for this purpose. The principle works like this: The boron unit "migrates" from one carbon atom to the neighbouring atom, thus enabling a second C-C coupling.

    Using this method, the chemists can gradually incorporate individual building blocks of molecules at different points in the basic structure. "Since the boron unit remains in the product molecule, i.e. is 'preserved', it can be replaced by another molecular unit, which can be done using the entire spectrum of industrial methods. The commercially available allylboronic esters thus appear in a new guise," says Armido Studer, the lead author of the study. The new method may in future be relevant for the production of drugs. In the future, the new method may be relevant for the production of pharmaceuticals, among other things.

    Funding:

    The study received financial support by the European Research Council.


    Contact for scientific information:

    Prof. Dr. Armido Studer, Westfälische Wilhelms-Universität Münster
    Tel: +49(0)251 83-33291
    studer@uni-muenster.de


    Original publication:

    K. Jana et al. (2020): Radical 1,3-Difunctionalization of Allylboronic Esters with Concomitant 1,2-Boron Shift. Chem; DOI: 10.1016/j.chempr.2019.12.022


    More information:

    https://www.sciencedirect.com/science/article/abs/pii/S2451929419305698 Original publikation in "Chem"
    https://www.uni-muenster.de/Chemie.oc/studer/ Research group Prof. Armido Studer at Münster University


    Images

    Criteria of this press release:
    Journalists
    Chemistry
    transregional, national
    Research results
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).