idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
07/07/2020 15:01

Wie bauen Bakterien Naturstoffe auf? Röntgenstrukturanalyse gibt detaillierte Einblicke in molekulare Wirkstoff-Fabrik

Dr. Ulrich Marsch Corporate Communications Center
Technische Universität München

    Die Wirkstoffe vieler Medikamente sind Naturstoffe, so benannt, weil oft nur Mikroorganismen die komplexen Strukturen herstellen können. Ähnlich wie am Fließband einer Fabrik setzen große Enzymkomplexe diese Wirkstoff-Moleküle zusammen. Einem Team der Technischen Universität München (TUM) und der Goethe-Universität Frankfurt ist es jetzt gelungen, die grundlegenden Mechanismen einer dieser molekularen Fabriken aufzuklären.

    Viele wichtige Medikamente, beispielsweise Antibiotika oder Wirkstoffe gegen Krebs, sind Naturstoffe, die von Mikroorganismen wie zum Beispiel Bakterien oder Pilzen aufgebaut werden. Im Labor können diese Naturstoffe oft gar nicht oder nur mit großem Aufwand hergestellt werden. Ausgangsbasis für eine große Zahl solcher Verbindungen sind Polyketide, Kohlenstoffketten, bei denen jedes zweite Atom eine Doppelbindung zu einem Sauerstoffatom besitzt.

    In der Zelle eines Mikroorganismus wie des Bakteriums Photorhabdus luminescens entstehen sie mit Hilfe von Polyketidsynthasen (PKS). Um schrittweise die gewünschten Moleküle aufzubauen, arbeiten bei Typ II PKS-Systemen in der ersten Stufe vier Proteine in wechselnden „Teams“ zusammen.

    In einer zweiten Stufe werden diese dann durch weitere Enzyme zum gewünschten Naturstoff modifiziert. Beispiele für so hergestellte bakterielle Naturstoffe sind unter anderem die klinisch genutzten Tetracyclin-Antibiotika oder das Krebsmedikament Doxorubicin.

    Interdisziplinäre Zusammenarbeit

    Während die modifizierenden Schritte der zweiten Stufe für viele Wirkstoffe gut untersucht sind, gab es bisher kaum Einblicke in die grundsätzliche Arbeitsweise der ersten Stufe dieser molekularen Wirkstoff-Fabriken, bei der das sehr reaktive Polyketid-Zwischenprodukt am Enzymkomplex gebunden und geschützt vorliegt, so dass es nicht spontan reagieren kann.

    Diese Lücke schließen nun die im renommierten Fachjournal Nature Chemistry veröffentlichten Ergebnisse der Kooperation zwischen den Arbeitsgruppen von Michael Groll, Professor für Biochemie an der TU München, und Helge Bode, Professor für Molekulare Biotechnologie der Goethe-Universität Frankfurt.

    Erkenntnisse inspirieren zu neuen Wirkstoffsynthesen

    „Im Rahmen dieser Arbeit konnten wir erstmals Komplexe der verschiedenen Partner-Proteine der Typ II Polyketidsynthase mit Hilfe der Röntgenstrukturanalyse analysieren und so den ganzen katalytischen Zyklus im Detail verstehen“, erläutert Michael Groll.

    „Basierend auf diesen Erkenntnissen wird es in Zukunft möglich sein, gezielt in die zentralen biochemischen Prozesse einzugreifen und damit die Grundstrukturen zu verändern, anstatt sich auf die dekorierenden Enzyme zu beschränken“, ergänzt Helge Bode.

    Bis verbesserte Antibiotika und andere Medikamente entstehen ist es zwar ein weiter Weg, aber beide Gruppen sind optimistisch, dass nun auch die noch fehlenden Teile der molekularen Fabrik in Struktur und Mechanismus aufgeklärt werden können. „Wir haben bereits vielversprechende Daten von den weiteren Protein-Komplexen“, sagt Maximilian Schmalhofer, der als Doktorand in München an der Studie beteiligt war.

    ###

    Die Arbeiten wurden gefördert mit Mitteln der Deutschen Forschungsgemeinschaft (DFG) im Rahmen des SPP 1617, des SFB 1035 sowie des Exzellenzclusters Center for Integrated Protein Science München (CIPSM) und des LOEWE Schwerpunkts MegaSyn des Landes Hessen. Röntgenstrukturdaten wurden am Paul Scherrer Institut in Villigen (Schweiz) gemessen. Die Swedish National Infrastructure for Computing stellte Rechenzeit für die theoretische Modellierung zur Verfügung.


    Contact for scientific information:

    Prof. Dr. Michael Groll
    Technische Universität München
    Lehrstuhl für Biochemie
    Lichtenbergstr. 4, 85748 Garching
    Tel.: +49 89 289 13360 – michael.groll@tum.de
    Web: https://www.department.ch.tum.de/biochemie/

    Prof. Dr. Helge Bode
    Professur für Molekulare Biotechnologie
    Goethe-Universität Frankfurt
    Campus Riedberg
    Tel.: +49 69 798 29557 – E-Mail: h.bode@bio.uni-frankfurt.de
    Web: https://www.bio.uni-frankfurt.de/48050101/Abt__Bode


    Original publication:

    Publikation:

    Alois Bräuer, Qiuqin Zhou, Gina L.C. Grammbitter, Maximilian Schmalhofer, Michael Rühl, Ville R.I. Kaila, Helge B. Bode und Michael Groll:
    Structural snapshots of the minimal PKS system responsible for octaketide biosynthesis,
    Nature Chemistry 06.07.2020 – DOI: 10.1038/s41557-020-0491-7


    More information:

    https://www.nature.com/articles/s41557-020-0491-7 Originalpublikation
    https://www.tum.de/nc/die-tum/aktuelles/pressemitteilungen/details/36120/ Presseinformation auf der TUM-Website


    Images

    Ein Komplex aus drei Proteinen schützt das hochreaktive Hexaketid bei der Verlängerung zum Oktaketid. Aus diesem werden im Zusammenspiel mit weiteren Proteinen wichtige Naturstoffe hergestellt.
    Ein Komplex aus drei Proteinen schützt das hochreaktive Hexaketid bei der Verlängerung zum Oktaketid ...
    M. Schmalhofer / M. Groll
    TUM

    Beim Aufbau von Naturstoffen im Typ II PKS-System spielen die einzelnen Enzyme wie die Fließbänder einer Fabrik zusammen.
    Beim Aufbau von Naturstoffen im Typ II PKS-System spielen die einzelnen Enzyme wie die Fließbänder e ...
    M. Schmalhofer / M. Groll
    TUM


    Criteria of this press release:
    Journalists, Scientists and scholars, Students, Teachers and pupils, all interested persons
    Biology, Chemistry
    transregional, national
    Research results, Scientific Publications
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).