idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
16.12.2013 09:46

Die vielfältigen Wege zu Millisekunden-Pulsaren

Norbert Junkes Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Radioastronomie

    Zwei Bonner Astronomen haben ein Szenario vorgeschlagen für die Entwicklung einer neuen Art von Millisekunden-Pulsaren in Doppelsternsystemen mit ähnlichen Umlaufperioden und Exzentrizitäten. Nach der Hypothese von Paulo Freire und Thomas Tauris werden Materie und Drehmoment von einem Begleitstern durch Akkretion auf einen massereichen Weißen Zwergstern übertragen, der dadurch auf eine Gesamtmasse jenseits der für die Sternentwicklung kritischen Chandrasekhar-Grenzmasse anwächst. Wenn sich diese Hypothese bestätigt, ermöglicht das neue Wege bei der Erforschung der Physik von Sternen, speziell bei einem durch Akkretion verursachten Kollaps von sehr massereichen Weißen Zwergsternen.

    Neutronensterne können sich extrem schnell um ihre eigene Achse drehen – der Rekordwert liegt bei 716 Umdrehungen pro Sekunde! Solche außergewöhnlichen Objekte lassen sich als Millisekunden-Pulsare beobachten. Seit der ersten Entdeckung eines Millisekunden-Pulsars im Jahr 1982 hat man geglaubt, dass es sich dabei um alte tote Neutronensterne handeln muss, die nur glücklicherweise in einem Doppelsternsystem gelandet sind. Bei der Entwicklung des Begleitsterns zu einem Roten Riesen findet dann Übertragung von Masse und Drehimpuls auf den Neutronenstern statt, wodurch dessen Rotation beschleunigt wird. Ein solches Sternsystem ist auch als Röntgendoppelstern bekannt. Der Begleitstern entwickelt sich schließlich zu einem Weißen Zwerg, die Massenübertragung hört auf und der Neutronenstern wird zu einem Millisekunden-Pulsar, der durch seine gepulsten Radiosignale beobachtbar wird. Die Umlaufbahnen solcher Doppelsternsysteme haben eine sehr geringe Exzentrizität, das heißt, es handelt sich dabei um nahezu perfekte Kreisbahnen. Die Ursache dafür kann auf die Massenübertragung zurückgeführt werden und ein solches Szenario wird sowohl durch theoretische Berechnungen als auch durch Beobachtungen von Systemen in unterschiedlichen Stadien bei der Entwicklung von Röntgendoppelsternen zu Millisekunden-Pulsaren bestätigt.

    Neu gefundene Pulsare wie PSR J1946+3417 lassen vermuten, dass es auch andere Wege geben muss, die zur Entwicklung von Millisekunden-Pulsaren führen. PSR J1946+3417 gehört zu den 14 Pulsaren, die erst kürzlich mit dem 100-m-Radioteleskop Effelsberg entdeckt worden sind. Mit 315 Umdrehungen pro Sekunde ist es eindeutig ein Millisekunden-Pulsar, aber die Exzentrizität der Umlaufbahn ist 4 Größenordnungen höher als bei anderen Systemen mit vergleichbarer Umlaufperiode. Die Masse des Begleitsterns liegt bei 0,24 Sonnenmassen; es handelt sich dabei höchstwahrscheinlich um einen Weißen Zwerg mit Heliumkern. Interessanterweise sind fast zur gleichen Zeit zwei weitere Systeme mit ganz ähnlichen Parametern entdeckt worden, diesmal durch Beobachtungen mit dem Arecibo-305m-Radioteleskop.

    Es ist durchaus möglich, dass diese Sternsysteme ihre Entwicklung als Dreifachsterne begonnen haben, die schließlich dynamisch instabil wurden, wie zum Beispiel bei PSR J1903+0327, dem ersten Millisekunden-Pulsar mit einer sehr exzentrischen Umlaufbahn. Ein solcher Prozess sollte allerdings zu einer großen Bandbreite von Umlaufperioden, Bahnexzentrizitäten und Begleitsternmassen führen, ganz im Gegensatz zu den drei neu gefundenen Systemen, die sich in allen Parametern sehr ähneln.

    Die neue Hypothese beinhaltet den Kollaps eines massereichen Weißen Zwergs, nachdem die Massenübertragung vom Begleitstern aufgehört hat. Sie erklärt nicht nur die Ähnlichkeiten von Bahnexzentrizität und Masse des Begleitsterns, sondern auch ihre absoluten Werte. "Ich war schon überrascht, als wir uns die von unserem Modell vorhergesagten Bahnperioden und Exzentrizitäten angesehen haben", sagt Thomas Tauris, der in beiden Forschungsgruppen, "Sternphysik" am Argelander-Institut für Astronomie und "Radioastronomische Fundamentalphysik" am Max-Planck-Institut für Radioastronomie, mitarbeitet. "Sie stimmen exakt mit den Beobachtungen überein! Dadurch war mir klar, dass wir auf einer interessanten Spur sind, obwohl es noch eine Stichprobe mit sehr wenigen Daten darstellt."

    Die neue Theorie basiert auf umfangreichen Computermodellen, die unter der Leitung von Thomas Tauris gerechnet wurden. Sie ermöglicht Vorhersagen für diese Art von Doppelsternsystemen. Zum Beispiel sollten die Umlaufperioden zwischen 10 und 60 Tagen liegen, jedoch konzentriert auf den mittleren Bereich dazwischen. Und das stimmt exakt mit den beobachteten Werten der drei neuen Systeme überein.

    "Unser neuer Ansatz ist sehr elegant", sagt der Erstautor, Paulo Freire vom Max-Planck-Institut für Radioastronomie. "Aber ob die Natur in der Tat Millisekunden-Pulsare auf diese Art erzeugt, wissen wir damit natürlich noch nicht."

    In den nächsten Jahren wird das Pulsar-Team in der Forschungsgruppe “Radioastronomische Fundamentalphysik” am Max-Planck-Institut für Radioastronomie in der Lage sein, die Vorhersagen des hier vorgestellten Szenarios zu überprüfen, speziell über optische Nachfolgebeobachtungen und präzise Massenbestimmungen von Pulsaren und Begleitsternen. Sie werden ebenso versuchen, weitere Systeme dieser Art mit dem Radioteleskop Effelsberg aufzuspüren.

    "Das Schöne dabei ist, dass wir bei der Bestätigung unserer Theorie einiges über Impuls und Massenverlust in Verbindung mit solchen Supernovae lernen können, die erst durch Massenübertragung ausgelöst werden, oder auch über das Innere von Neutronensternen. Es könnte einen sehr wichtigen Puzzlestein für unser Verständnis von diesen Vorgängen darstellen", schließt Paulo Freire.

    ----------------------------------------

    Die Veröffentlichung erscheint als Letter in der Fachzeitschrift Monthly Notices of the Royal Astronomical Society.

    Kontakt:

    Dr. Paulo Freire
    Max-Planck-Institut für Radioastronomie, Bonn, Germany.
    Fon: +49(0)228-525-496
    E-mail: pfreire@mpifr-bonn.mpg.de

    Dr. Thomas Tauris,
    Argelander-Institut für Astronomie &
    Max-Planck-Institut für Radioastronomie, Bonn, Germany.
    Fon: +49(0)228-73-3660
    E-mail: tauris@astro.uni-bonn.de

    Dr. Norbert Junkes,
    Presse- und Öffentlichkeitsarbeit,
    Max-Planck-Institut für Radioastronomie, Bonn, Germany.
    Fon: +49(0)228-525-399
    E-mail: njunkes@mpifr-bonn.mpg.de


    Weitere Informationen:

    http://www.mpifr-bonn.mpg.de/pressemeldungen/2013/13


    Bilder

    Spätstufen der Entwicklung von engen Doppelsternsystemen nach dem neuen hier beschriebenen Szenario.  Alle im Diagramm angegebenen Massen sind in Sonnenmassen skaliert. ~
    Spätstufen der Entwicklung von engen Doppelsternsystemen nach dem neuen hier beschriebenen Szenario. ...
    Quelle: Paulo Freire & Thomas Tauris

    100-m-Radiotelekop des MPIfR bei Effelsberg, gesehen vom Besucherpavillon aus. Der Millisekunden-Pulsar PSR J1946+3417 ist einer von 14 erst kürzlich mit diesem  Teleskop entdeckten Pulsaren.
    100-m-Radiotelekop des MPIfR bei Effelsberg, gesehen vom Besucherpavillon aus. Der Millisekunden-Pul ...
    Quelle: MPIfR/Norbert Junkes


    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler, jedermann
    Physik / Astronomie
    überregional
    Forschungsergebnisse
    Deutsch


     

    Spätstufen der Entwicklung von engen Doppelsternsystemen nach dem neuen hier beschriebenen Szenario. Alle im Diagramm angegebenen Massen sind in Sonnenmassen skaliert. ~


    Zum Download

    x

    100-m-Radiotelekop des MPIfR bei Effelsberg, gesehen vom Besucherpavillon aus. Der Millisekunden-Pulsar PSR J1946+3417 ist einer von 14 erst kürzlich mit diesem Teleskop entdeckten Pulsaren.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).