idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
02.05.2018 09:53

Mehr als nur Zuschauer

Dr. Boris Pawlowski Presse, Kommunikation und Marketing
Christian-Albrechts-Universität zu Kiel

    Physikteam der Uni Kiel erforscht Einfluss von Ionen auf atomare Bewegung

    In Batterien, Brennstoffzellen oder technischen Beschichtungen laufen zentrale chemische Prozesse an der Oberfläche von Elektroden ab. Dabei bewegen sich Atome über die Oberfläche, die in Kontakt mit Flüssigkeiten steht. Doch wie dies genau geschieht, ist noch wenig erforscht. Diese Bewegungsabläufe und die Rolle der beteiligten chemischen Komponenten wollen Physikerinnen und Physiker der Christian-Albrechts-Universität zu Kiel (CAU) besser verstehen.

    In Batterien, Brennstoffzellen oder technischen Beschichtungen laufen zentrale chemische Prozesse an der Oberfläche von Elektroden ab. Dabei bewegen sich Atome über die Oberfläche, die in Kontakt mit Flüssigkeiten steht. Doch wie dies genau geschieht, ist noch wenig erforscht. Diese Bewegungsabläufe und die Rolle der beteiligten chemischen Komponenten wollen Physikerinnen und Physiker der Christian-Albrechts-Universität zu Kiel (CAU) besser verstehen. Dafür beobachteten sie unter höchster mikroskopischer Auflösung, wie sich Schwefelatome auf Kupferelektroden bewegen, die in unterschiedlichen Salzlösungen eingetaucht sind. Mikroskopische Videoaufnahmen zeigten, dass diese Bewegungen von Ionen gesteuert werden, die sich auf der Oberfläche der Elektrode angelagert hatten. Diese Erkenntnisse könnten dazu beitragen, solche Bewegungsabläufe gezielt zu kontrollieren und damit beispielsweise Beschichtungsprozesse in der Mikroelektronikindustrie zu optimieren. Die Ergebnisse dieser Studie erschienen in der aktuellen Ausgabe der renommierten Fachzeitschrift Angewandte Chemie.

    Mit Prozessen an Grenzflächen ist es ähnlich wie beim Fußballspiel im Stadion: Die Tore schießt das Team auf dem Platz, aber vermutlich hat auch die Unterstützung des Publikums einen Einfluss auf den Verlauf der Partie. „Ionen oder Moleküle, die sich an einer Oberfläche anlagern, können dort ablaufende Reaktionen entscheidend beeinflussen, auch wenn sie daran nicht direkt beteiligt sind“, so Professor Olaf Magnussen, Leiter der Arbeitsgruppe „Grenzflächenphysik“ am Institut für Experimentelle und Angewandte Physik. „Spectator species“ werden diese Atome in der Chemie genannt. Welchen Einfluss solche atomaren „Zuschauer“ auf Reaktionen an Grenzflächen genau haben, ist in den meisten Fällen aber nur ansatzweise bekannt. Weitere Erkenntnisse darüber könnten helfen, diese Prozesse besser zu steuern.

    In ihrem Experiment untersuchte die Forschungsgruppe Kupferelektroden in Salzlösungen, die Chlor- oder Bromionen enthielten. Diese Ionen lagerten sich als „Zuschauer“ auf der Kupferoberfläche an. Anschließend fügten die Forschenden kleine Mengen von Schwefelatomen hinzu und beobachteten deren Wärmebewegung auf der Oberfläche der Elektrode. Dazu verwendeten sie ein besonderes Rastertunnelmikroskop, das einzelne Atome selbst in Salzlösungen sichtbar machen kann. Da dies nur bei Temperaturen über dem Gefrierpunkt funktioniert, bewegen sich die Atome verhältnismäßig schnell, die Mikroskopbilder müssen also in kurzer Zeit aufgenommen werden. Im Rastertunnelmikroskop „tastet“ eine winzige Metallspitze die Elektrode ab und erstellt so ein Bild ihrer Oberfläche. Dies dauert in Standardgeräten typischerweise eine Minute. Über mehrere Jahre hat die Kieler Arbeitsgruppe ihr Mikroskop so weiterentwickelt, dass es bis zu 20 Abbildungen pro Sekunde erstellen kann. Mit diesem weltweit einzigartigen Instrument ist es möglich, in einem Video festzuhalten, wie sich Atome auf einer Oberfläche bewegen.

    Die entstandenen Aufnahmen überraschten das Forschungsteam: In beiden Salzlösungen hing die Bewegungsgeschwindigkeit der Schwefelatome stark von der Spannung ab, die an der Elektrode angelegt wurde. Bereits bei einer Erhöhung der Spannung um 1/10 Volt änderte sich die Bewegungsgeschwindigkeit um das Zehnfache. Während sich die Schwefelatome auf der Oberfläche mit Chlorionen bei hoher Spannung langsamer bewegten, veränderten sie ihre Position auf der Oberfläche mit Bromionen schneller. „Chlor und Brom sind sich chemisch sehr ähnlich – dieses unterschiedliche Verhalten hatten wir nicht erwartet“, betont Björn Rahn, der diese Untersuchungen als Teil seiner Doktorarbeit bei Magnussen durchführte.

    Hinweise auf die Ursache dieser Unterschiede lieferten Computersimulationen der Arbeitsgruppe von Professor Eckhard Pehlke aus dem Institut für Theoretische Physik und Astrophysik. „Der Grund, dass Schwefel sich auf Oberflächen mit Chlor- und Bromionen so gegensätzlich verhält, liegt darin, dass die zwei Ionen unterschiedliche Bewegungsmechanismen auslösen“, erläutert Pehlke die Berechnungen seines Teams. Während sich Schwefelatome in Gegenwart von Chlorionen nur auf der Oberfläche bewegen, legen die Berechnungen für die Oberfläche mit Bromionen die Vermutung nahe, dass die Schwefelatome beim Verändern ihrer Position kurzzeitig in das Metall eintauchen.

    Die Computersimulationen bestätigen, dass die Brom- und Chlorionen auf der Oberfläche mehr sind als passive Zuschauer und die chemischen Prozesse stattdessen direkt beeinflussen. Diese Erkenntnisse der Grundlagenforschung helfen nicht nur, elementare Prozesse an Grenzflächen besser zu verstehen. „Unsere Ergebnisse sind auch ein erster Schritt, um solche elektrochemischen Prozesse besser zu steuern“, blickt Magnussen in die Zukunft.

    Die Untersuchungen wurden finanziell unterstützt von der Deutschen Forschungsgemeinschaft.

    Originalpublikation:
    Coadsorbate-induced reversal of Solid-Liquid Interface Dynamics B. Rahn, R. Wen, L. Deuchler, J. Stremme, A. Franke, E. Pehlke, and O. M. Magnussen, Angewandte Chemie. 2018 April 26
    https://doi.org/10.1002/ange.201712728
    https://onlinelibrary.wiley.com/doi/full/10.1002/ange.201712728

    Bildmaterial steht zum Download bereit:
    http://www.uni-kiel.de/download/pm/2018/2018-115-1.png
    Bildunterschrift: Wie sich Atome über eine Metalloberfläche bewegen: Computersimulationen legen nahe, dass Schwefelatome (gelb) in Gegenwart einer Schicht aus Bromionen (magenta) ihre Position verändern, indem sie kurzzeitig in das Metall (orange) abtauchen (siehe Pfeil).
    Copyright: Deuchler

    http://www.uni-kiel.de/download/pm/2018/2018-115-2.jpg
    Bildunterschrift: Aufnahme im Rastertunnelmikroskop von Schwefelatomen (rot) auf Kupfer, umgeben von Bromionen (grün).
    Copyright: Rahn

    http://www.uni-kiel.de/download/pm/2018/2018-115-3.jpg
    Bildunterschrift: Doktorand Björn Rahn (rechts) aus der Arbeitsgruppe Grenzflächenphysik führte die Experimente durch. Lukas Deuchler (links), der zurzeit in der Theoretischen Physik promoviert, hat auf Hochleistungsrechnern die atomaren Prozesse auf der Oberfläche simuliert.
    Foto/Copyright: Siekmann, CAU

    Kontakt:
    Prof. Dr. Olaf Magnussen
    Institut für Experimentelle und Angewandte Physik
    Tel.: 0431/880 5579
    E-Mail: magnussen@physik.uni-kiel.de
    http://www.ieap.uni-kiel.de/solid/ag-magnussen

    Prof. Dr. Eckhard Pehlke
    Institut für Theoretische Physik und Astrophysik
    Tel: 0431 880-4112
    E-Mail: pehlke@theo-physik.uni-kiel.de

    Details, die nur Millionstel Millimeter groß sind: Damit beschäftigt sich der Forschungsschwerpunkt »Nanowissenschaften und Oberflächenforschung« (Kiel Nano, Surface and Interface Science – KiNSIS) an der Christian-Albrechts-Universität zu Kiel (CAU). Im Nanokosmos herrschen andere, nämlich quantenphysikalische, Gesetze als in der makroskopischen Welt. Durch eine intensive interdisziplinäre Zusammenarbeit zwischen Physik, Chemie, Ingenieurwissenschaften und Life Sciences zielt der Schwerpunkt darauf ab, die Systeme in dieser Dimension zu verstehen und die Erkenntnisse anwendungsbezogen umzusetzen. Molekulare Maschinen, neuartige Sensoren, bionische Materialien, Quantencomputer, fortschrittliche Therapien und vieles mehr können daraus entstehen. Mehr Informationen auf http://www.kinsis.uni-kiel.de


    Weitere Informationen:

    http://www.uni-kiel.de/pressemeldungen/index.php?pmid=2018-115-zuschaueratome


    Bilder

    Wie sich Atome bewegen: Computersimulationen legen nahe, dass Schwefelatome (gelb) in Gegenwart einer Schicht aus Bromionen (magenta) ihre Position verändern, indem sie kurz in das Metall abtauchen.
    Wie sich Atome bewegen: Computersimulationen legen nahe, dass Schwefelatome (gelb) in Gegenwart eine ...
    Copyright: Deuchler
    None

    Björn Rahn (r.) aus der Arbeitsgruppe Grenzflächenphysik führte die Experimente durch. Lukas Deuchler (l.) simulierte die atomaren Prozesse auf Hochleistungsrechnern.
    Björn Rahn (r.) aus der Arbeitsgruppe Grenzflächenphysik führte die Experimente durch. Lukas Deuchle ...
    Foto: Siekmann/CAU
    None


    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler
    Physik / Astronomie
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    Wie sich Atome bewegen: Computersimulationen legen nahe, dass Schwefelatome (gelb) in Gegenwart einer Schicht aus Bromionen (magenta) ihre Position verändern, indem sie kurz in das Metall abtauchen.


    Zum Download

    x

    Björn Rahn (r.) aus der Arbeitsgruppe Grenzflächenphysik führte die Experimente durch. Lukas Deuchler (l.) simulierte die atomaren Prozesse auf Hochleistungsrechnern.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).