idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
08/14/2025 13:31

New method facilitates realistic simulation of fluids

Julia Rinner Corporate Communications Center
Technische Universität München

    Storm surges or collapsing dams: authentic simulations of water flows are not only important for special effects in disaster movies, but could also help to protect coastal regions. For more realistic simulations of fluid motions, researchers at the Technical University of Munich (TUM) have developed a new method. Along with water, the method also takes into account the interaction with air. The approach is so efficient that calculations of complex wave motions can even be carried out with standard computers.

    A wave breaks on the shore, sending up splashes of water and spray and creating eddies in the surrounding air. However, the digital simulation of this everyday natural occurrence is anything but routine. Previous computer graphic methods focused on the water and neglected the interaction with air. Effects such as spray and foam were represented in simplified form, resulting in visible differences between the simulation and reality.
    “We have now succeeded in developing a process that incorporates both phases – water and air – equally. Through this two-phase simulation, as we call it, we can also represent such details as aerosols and eddies in the air much more realistically than in past approaches,” says Nils Thuerey, Professor of Physics-based Simulation.

    Minimizing computing power while maximizing precision

    In the study, the boundary between air and water is not reconstructed as a fixed surface, but rather as a continuous transition zone. To do so, the researchers apply a hybrid method incorporating a grid and particle simulation. While the grid simulation calculates physical properties such as velocity and pressure, the particle simulation captures the motion and distribution of the fluid. The simulation dynamically adapts to the complexity of the wave motion and refines itself in areas where the most motion is occurring – for example in the spray zone of a breaking wave. At the same time, the system conserves resources in less active areas.

    “By focusing our simulation only on certain areas, we save a lot of computing power and can also efficiently compute highly complex wave motions with billions of particles and grid cells on a standard system,” says Bernhard Braun, first author and doctoral candidate at the Professorship of Physics-based Simulation. “At the same time, this approach has enabled us to simplify the calculation of the pressure difference between air and water. This has always been a big challenge in the two-phase simulation.”

    Applications also possible in coastal protection

    The simulation of fluids is not only important in big-budget movies. It also has potential applications in such fields as oceanography. Through the simulation of high waves or even dam failures, it could help to provide better protection of coastal regions against floods or other extreme weather events.


    Contact for scientific information:

    Prof. Dr. Nils Thuerey
    Technical University of Munich (TUM)
    Professor of Physics-based Simulation
    nils.thuerey@tum.de


    Original publication:

    Braun, B., Bender, J., Thuerey, N. Adaptive Phase-Field-FLIP for Very Large Scale Two-Phase Fluid Simulation. ACM Trans. Graph (2025). https://doi.org/10.1145/3730854


    More information:

    https://www.tum.de/en/news-and-events/all-news/press-releases/details/new-method...


    Images

    Prof. Nils Thuerey and his team simulate wave movements using a two-phase model that takes into account both water and air.
    Prof. Nils Thuerey and his team simulate wave movements using a two-phase model that takes into acco ...
    Source: Andreas Heddergott / TUM
    Copyright: © Andreas Heddergott / TU Muenchen Free for use in reporting on TUM, with the copyright noted


    Criteria of this press release:
    Journalists
    Information technology, Oceanology / climate, Physics / astronomy
    transregional, national
    Research results, Scientific Publications
    English


     

    Prof. Nils Thuerey and his team simulate wave movements using a two-phase model that takes into account both water and air.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).