Storm surges or collapsing dams: authentic simulations of water flows are not only important for special effects in disaster movies, but could also help to protect coastal regions. For more realistic simulations of fluid motions, researchers at the Technical University of Munich (TUM) have developed a new method. Along with water, the method also takes into account the interaction with air. The approach is so efficient that calculations of complex wave motions can even be carried out with standard computers.
A wave breaks on the shore, sending up splashes of water and spray and creating eddies in the surrounding air. However, the digital simulation of this everyday natural occurrence is anything but routine. Previous computer graphic methods focused on the water and neglected the interaction with air. Effects such as spray and foam were represented in simplified form, resulting in visible differences between the simulation and reality.
“We have now succeeded in developing a process that incorporates both phases – water and air – equally. Through this two-phase simulation, as we call it, we can also represent such details as aerosols and eddies in the air much more realistically than in past approaches,” says Nils Thuerey, Professor of Physics-based Simulation.
Minimizing computing power while maximizing precision
In the study, the boundary between air and water is not reconstructed as a fixed surface, but rather as a continuous transition zone. To do so, the researchers apply a hybrid method incorporating a grid and particle simulation. While the grid simulation calculates physical properties such as velocity and pressure, the particle simulation captures the motion and distribution of the fluid. The simulation dynamically adapts to the complexity of the wave motion and refines itself in areas where the most motion is occurring – for example in the spray zone of a breaking wave. At the same time, the system conserves resources in less active areas.
“By focusing our simulation only on certain areas, we save a lot of computing power and can also efficiently compute highly complex wave motions with billions of particles and grid cells on a standard system,” says Bernhard Braun, first author and doctoral candidate at the Professorship of Physics-based Simulation. “At the same time, this approach has enabled us to simplify the calculation of the pressure difference between air and water. This has always been a big challenge in the two-phase simulation.”
Applications also possible in coastal protection
The simulation of fluids is not only important in big-budget movies. It also has potential applications in such fields as oceanography. Through the simulation of high waves or even dam failures, it could help to provide better protection of coastal regions against floods or other extreme weather events.
Prof. Dr. Nils Thuerey
Technical University of Munich (TUM)
Professor of Physics-based Simulation
nils.thuerey@tum.de
Braun, B., Bender, J., Thuerey, N. Adaptive Phase-Field-FLIP for Very Large Scale Two-Phase Fluid Simulation. ACM Trans. Graph (2025). https://doi.org/10.1145/3730854
https://www.tum.de/en/news-and-events/all-news/press-releases/details/new-method...
Prof. Nils Thuerey and his team simulate wave movements using a two-phase model that takes into acco ...
Quelle: Andreas Heddergott / TUM
Copyright: © Andreas Heddergott / TU Muenchen Free for use in reporting on TUM, with the copyright noted
Merkmale dieser Pressemitteilung:
Journalisten
Informationstechnik, Meer / Klima, Physik / Astronomie
überregional
Forschungsergebnisse, Wissenschaftliche Publikationen
Englisch
Prof. Nils Thuerey and his team simulate wave movements using a two-phase model that takes into acco ...
Quelle: Andreas Heddergott / TUM
Copyright: © Andreas Heddergott / TU Muenchen Free for use in reporting on TUM, with the copyright noted
Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.
Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).
Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.
Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).
Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).