idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
10/08/2025 09:01

“Security check” inside the cell: Self-cleavage as built-in quality control

Susann Sika, Translation: Matthew Rockey Stabsstelle Universitätskommunikation / Medienredaktion
Universität Leipzig

    Researchers at Leipzig University and Martin Luther University Halle-Wittenberg have investigated a previously unknown process that occurs during protein synthesis in the cell. They examined how so-called adhesion G protein-coupled receptors (aGPCRs) split themselves into two parts. This self-cleavage takes place in a region of the protein known as the GAIN domain, which is considered crucial for the receptor’s ability to detect and transmit signals. The self-cleavage acts as a kind of built-in quality control: only correctly cleaved receptors are allowed to leave the “cell factory” and reach the surface. The study has just been published in the journal Nature Communications.

    Cells constantly monitor their surroundings and detect chemical and mechanical signals that control vital functions such as movement, growth and communication. Adhesion G protein-coupled receptors (aGPCRs) – a special family of surface molecules – act as mechanical force sensors and play a key role in processes ranging from muscle growth to the formation of neural networks in the brain. Malfunctioning aGPCRs can cause serious health conditions such as allergies, schizophrenia, and cancer.

    The research teams led by Professor Tobias Langenhan of Leipzig University’s Faculty of Medicine and Professor Andrea Sinz from the Institute of Pharmacy at Martin Luther University Halle-Wittenberg discovered that another part of the receptor – the so-called seven-transmembrane (7TM) region – plays a crucial supporting role in the cleavage process. It not only stabilises the GAIN domain but also helps position it correctly within the cell’s protein-producing machinery. In addition, the teams identified helper molecules in the cell that interact with the receptor during this process. These include enzymes that add sugar groups to the newly formed protein.

    “Together, these factors ensure that the receptor’s self-cleavage proceeds efficiently. Remarkably, receptors that are unable to cleave themselves can be retained within the cell and fail to reach the surface, where they are needed to receive signals from the external environment,” says Professor Tobias Langenhan. These findings suggest that self-cleavage functions as a built-in quality control mechanism within the cell. This finding opens up new avenues of research into how this checkpoint is implemented and what role it plays in the development of certain medical conditions.

    This research stems from a joint project within Collaborative Research Centre (CRC) 1423, Structural Dynamics of GPCR Activation and Signaling. CRC 1423 is a four-year research centre funded by the German Research Foundation (DFG), with five participating institutions: Leipzig University, Martin Luther University Halle-Wittenberg, Charité – Universitätsmedizin Berlin, Heinrich Heine University Düsseldorf, and the University Medical Center Mainz. Researchers from these institutions with backgrounds in biochemistry, biomedicine and computational science are collaborating on an interdisciplinary basis to gain a comprehensive understanding of how structural dynamics affect GPCR function.


    Contact for scientific information:

    Prof. Dr. Tobias Langenhan
    Leipzig University, Faculty of Medicine
    Rudolf Schönheimer Institute of Biochemistry
    Phone: +49341 - 97 22100
    Email: tobias.langenhan@uni-leipzig.de

    Professor Andrea Sinz
    Martin Luther University Halle-Wittenberg
    Institute of Pharmacy
    Phone: +49345 - 55 25170
    Email: andrea.sinz@pharmazie.uni-halle.de


    Original publication:

    Original title of the publication in Nature Communications:
    “Self-cleavage of the GAIN domain of adhesion G protein-coupled receptors requires multiple domain-extrinsic factors”, Doi: 10.1038/s41467-025-64589-3
    https://www.nature.com/articles/s41467-025-64589-3


    More information:

    https://research.uni-leipzig.de/sfb1423/


    Images

    When cells produce aGPCRs – our cellular force sensors – the receptors split into two parts. It has now been shown that they need assistance to complete this cleavage before being transported to the cell surface.
    When cells produce aGPCRs – our cellular force sensors – the receptors split into two parts. It has ...
    Source: Yin Kwan Chung, BioRender.com
    Copyright: Yin Kwan Chung


    Criteria of this press release:
    Journalists, Scientists and scholars
    Biology, Chemistry, Medicine
    transregional, national
    Research results, Scientific Publications
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).