Researchers at Leipzig University and Martin Luther University Halle-Wittenberg have investigated a previously unknown process that occurs during protein synthesis in the cell. They examined how so-called adhesion G protein-coupled receptors (aGPCRs) split themselves into two parts. This self-cleavage takes place in a region of the protein known as the GAIN domain, which is considered crucial for the receptor’s ability to detect and transmit signals. The self-cleavage acts as a kind of built-in quality control: only correctly cleaved receptors are allowed to leave the “cell factory” and reach the surface. The study has just been published in the journal Nature Communications.
Cells constantly monitor their surroundings and detect chemical and mechanical signals that control vital functions such as movement, growth and communication. Adhesion G protein-coupled receptors (aGPCRs) – a special family of surface molecules – act as mechanical force sensors and play a key role in processes ranging from muscle growth to the formation of neural networks in the brain. Malfunctioning aGPCRs can cause serious health conditions such as allergies, schizophrenia, and cancer.
The research teams led by Professor Tobias Langenhan of Leipzig University’s Faculty of Medicine and Professor Andrea Sinz from the Institute of Pharmacy at Martin Luther University Halle-Wittenberg discovered that another part of the receptor – the so-called seven-transmembrane (7TM) region – plays a crucial supporting role in the cleavage process. It not only stabilises the GAIN domain but also helps position it correctly within the cell’s protein-producing machinery. In addition, the teams identified helper molecules in the cell that interact with the receptor during this process. These include enzymes that add sugar groups to the newly formed protein.
“Together, these factors ensure that the receptor’s self-cleavage proceeds efficiently. Remarkably, receptors that are unable to cleave themselves can be retained within the cell and fail to reach the surface, where they are needed to receive signals from the external environment,” says Professor Tobias Langenhan. These findings suggest that self-cleavage functions as a built-in quality control mechanism within the cell. This finding opens up new avenues of research into how this checkpoint is implemented and what role it plays in the development of certain medical conditions.
This research stems from a joint project within Collaborative Research Centre (CRC) 1423, Structural Dynamics of GPCR Activation and Signaling. CRC 1423 is a four-year research centre funded by the German Research Foundation (DFG), with five participating institutions: Leipzig University, Martin Luther University Halle-Wittenberg, Charité – Universitätsmedizin Berlin, Heinrich Heine University Düsseldorf, and the University Medical Center Mainz. Researchers from these institutions with backgrounds in biochemistry, biomedicine and computational science are collaborating on an interdisciplinary basis to gain a comprehensive understanding of how structural dynamics affect GPCR function.
Prof. Dr. Tobias Langenhan
Leipzig University, Faculty of Medicine
Rudolf Schönheimer Institute of Biochemistry
Phone: +49341 - 97 22100
Email: tobias.langenhan@uni-leipzig.de
Professor Andrea Sinz
Martin Luther University Halle-Wittenberg
Institute of Pharmacy
Phone: +49345 - 55 25170
Email: andrea.sinz@pharmazie.uni-halle.de
Original title of the publication in Nature Communications:
“Self-cleavage of the GAIN domain of adhesion G protein-coupled receptors requires multiple domain-extrinsic factors”, Doi: 10.1038/s41467-025-64589-3
https://www.nature.com/articles/s41467-025-64589-3
https://research.uni-leipzig.de/sfb1423/
When cells produce aGPCRs – our cellular force sensors – the receptors split into two parts. It has ...
Quelle: Yin Kwan Chung, BioRender.com
Copyright: Yin Kwan Chung
Merkmale dieser Pressemitteilung:
Journalisten, Wissenschaftler
Biologie, Chemie, Medizin
überregional
Forschungsergebnisse, Wissenschaftliche Publikationen
Englisch
When cells produce aGPCRs – our cellular force sensors – the receptors split into two parts. It has ...
Quelle: Yin Kwan Chung, BioRender.com
Copyright: Yin Kwan Chung
Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.
Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).
Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.
Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).
Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).