idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
04.05.2005 14:02

DNA auf Wanderschaft in der Zelle

Claudia Lorenz Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Züchtungsforschung

    Kölner Max-Planck-Forscher entdecken im Zellkern von Pflanzen Sequenzen, die aus einem Mosaik aus Mitochondrien- und Chloroplasten-DNA bestehen.

    Ein nicht unerheblicher Anteil von DNA im Zellkern von Pflanzen stammt aus Mitochondrien und Chloroplasten. Biologen vom Max-Planck-Institut für Züchtungsforschung in Köln entdeckten einen neuartigen Mechanismus, bei dem wandernde DNA vor ihrem Einbau in den Zellkern wie ein Puzzle aus Mitochondrien- und Chloroplasten-DNA zusammengesetzt wird. Mit ihrer Entdeckung leisten die Forscher einen wesentlichen Beitrag zum besseren Verständnis der Übertragung fremder Gene in den Zellkern (Genome Research 15: 616-628, Mai 2005).

    Erbinformation (DNA) ist innerhalb der Zelle auf verschiedene Bereiche verteilt. Mehr als 99% der DNA befindet sich im Zellkern, der Rest ist in so genannten Organellen, den Mitochondrien und Chloroplasten, enthalten. Diese entwickelten sich aus frei lebenden Bakterien, die vor Urzeiten Teil primitiver Zellen wurden. Zunächst nahmen die Zellen bakterielle Vorläufer der Mitochondrien auf, die sich mit der Zeit zu den Kraftwerken der Zellen umwandelten. Die Vorläufer der Pflanzen nahmen dann noch eine weitere Bakterienart auf, was zur Entwicklung der Chloroplasten, den Solarzellen der Pflanze, führte. Die Vorläufer der Mitochondrien und Chloroplasten brachten ihre eigene DNA mit in die Zelle. Ein Großteil davon wurde an den Kern abgegeben. Daher stammen heute mehrere tausend Gene im Zellkern ursprünglich aus diesen Bakterien. Zwar werden heute nur noch selten funktionsfähige Gene von Organellen in den Kern übertragen, aber trotzdem findet noch DNA-Wanderung von den Organellen zum Zellkern statt.

    Die Forscher Dario Leister, Christos Noutsos und Erik Richly analysierten systematisch die sequenzierten Genome von Reis und der Modellpflanze Arabidopsis. Dabei untersuchten sie insbesondere die längsten Organell-DNA-Stücke, die erst kürzlich in den Kern gewandert waren. Sie entdeckten dabei Sequenzen, die sich aus vielen kleinen Fragmenten von Organell-DNA zusammensetzen. In der Mai-Ausgabe des internationalen Fachmagazins Genome Research beschreiben die Max-Planck-Forscher, dass die einzelnen Bauteile gleichen Alters sind und erst kurz vor ihrem Einbau in die Kern-DNA zu dieser Mosaik-DNA zusammengefügt worden sein müssen. Wie kommt es aber zu dieser zeitgleichen Einwanderung von DNA-Fragmenten in den Kern und warum entsteht aus diesen Bauteilen die Mosaik-DNA? Nach den Erkenntnissen der Kölner Forscher passiert das höchstwahrscheinlich bei der Fortpflanzung der Pflanzen. Während der Bildung von Pollen kommt es zur Degeneration von Mitochondrien und Chloroplasten. Bei dieser Gelegenheit wird vermutlich DNA freigesetzt, die in den Kern wandert, dort neu kombiniert und dann als Ganzes in die Kern-DNA eingefügt wird. So gibt die Untersuchung der übertragenen Sequenzen wichtige Aufschlüsse über die Mechanismen der DNA-Wanderung und erlaubt wichtige Rückschlüsse darauf, wie fremde DNA in den Zellkern eingebaut wird.

    Die Struktur und damit die Funktionsfähigkeit der DNA sind ständig physikalischen, chemischen und biologischen Einflüssen ausgesetzt. In der Zelle kommt es daher regelmäßig zu DNA-Brüchen. Um diese Schäden wieder zu beheben, behilft sich die Zelle mit eigenen Reparaturmechanismen. Bei einer Variante werden fremde DNA-Stücke als "Kitt" eingefügt, um den Bruch zu schließen. Dieser Kitt kann DNA aus Mitochondrien und Chloroplasten sein. Der Klebemechanismus kann jedoch nicht zwischen Kern- und Organell-DNA unterscheiden. Daher kann DNA aus Mitochondrien und Chloroplasten zusammengestückelt werden, bevor sie in die Kern-DNA eingefügt wird.
    (CL/DL)

    Weitere Informationen erhalten Sie von:

    PD Dr. Dario Leister
    Max-Planck-Institut für Züchtungsforschung, Köln
    Tel.: 0221 5062-415
    Fax: 0221 5062-413
    E-Mail: leister@mpiz-koeln.mpg.de
    http://www.mpiz-koeln.mpg.de


    Bilder

    Elektronenmikroskopische Aufnahme einer Pflanzenzelle. Die runden bzw. ovalen Mitochondrien (M) sind um ein Vielfaches kleiner als die Chloroplasten (C). In der Mitte der Zelle erkennt man weiß eine große Vakuole (V). 4000fach.
    Elektronenmikroskopische Aufnahme einer Pflanzenzelle. Die runden bzw. ovalen Mitochondrien (M) sind ...
    Foto: R.D. Hirtz, Max-Planck-Institut für Züchtungsforschung
    None


    Merkmale dieser Pressemitteilung:
    Biologie, Informationstechnik
    überregional
    Forschungsergebnisse
    Deutsch


     

    Elektronenmikroskopische Aufnahme einer Pflanzenzelle. Die runden bzw. ovalen Mitochondrien (M) sind um ein Vielfaches kleiner als die Chloroplasten (C). In der Mitte der Zelle erkennt man weiß eine große Vakuole (V). 4000fach.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).