idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
01.07.2005 10:30

Die kleinste Angelrute der Welt

Dr. Andreas Trepte Abteilung Kommunikation
Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

    Wissenschaftlern gelingt tiefgreifender Einblick in die Schaltstation der
    Proteinsynthese-Maschinerie

    Ein Konsortium von Wissenschaftlern des Max-Planck-Instituts für
    biophysikalische Chemie in Göttingen, einer Max-Planck Arbeitsgruppe
    am DESY in Hamburg, der Universität Witten-Herdecke und der
    Moskauer Lomonossov Universität hat die atomare Struktur eines
    wichtigen Regulationszentrums der Proteinsynthesemaschinerie in
    lebenden Zellen aufgeklärt und ist dem Verständnis seiner Funktionsweise
    damit einen entscheidenden Schritt näher gekommen. In der aktuellen
    Ausgabe der Zeitschrift Cell (1. Juli 2005) beschreiben die
    Wissenschaftler, mit welchen Strukturen das Ribosom nach den so
    genannten Translationsfaktoren "fischt" und diese molekularen Schalter
    betätigt.

    Die überwiegende Zahl der biochemischen Vorgänge und Funktionen in lebenden Zellen, wie z.B.
    Katalyse von Reaktionen, Gerüstbildung, Kommunikation und Transport, werden von Proteinen
    unterhalten. Die Bauanleitungen für diese Proteine sind in der Erbinformation (DNS) einer jeden Zelle
    festgeschrieben. Sie werden abgerufen, indem zunächst Blaupausen der DNS in Form der
    Boten-Ribonukleinsäuren (RNS) angelegt und anschließend in eine Kette von Aminosäuren, die
    Proteinbausteine, übersetzt werden. Für diese Übersetzung ("Translation") ist das Ribosom zuständig.
    Mit einem Durchmesser von ca. 25 Milliardstel Millimetern stellen bereits die einfachsten Ribosomen aus
    Bakterien auf molekularer Ebene riesige Aggregate dar. Sie bestehen aus über fünfzig
    Proteinkomponenten und drei langen RNS-Molekülen, die zu einer großen und einer kleinen ribosomalen
    Untereinheit zusammengesetzt sind (siehe Bild). In Aufbau und Funktionsweise ist ein Ribosom einer
    Miniatur-Maschinerie vergleichbar: Die Boten-RNS wird wie ein Fließband durch diese Maschine
    hindurchgeschleust. Dabei wird das fadenförmige Botenmolekül Schritt für Schritt abgetastet; zu jedem
    Nukleinsäuretriplett existiert ein passendes Adaptermolekül, eine Transport-RNS (t-RNS), die eine
    bestimmte Aminosäure transportiert. Die Aminosäuren werden nacheinander zu einer Kette
    zusammengefügt und ergeben schließlich ein neues Proteinmolekül.
    Für jede Teilaufgabe, wie z.B. die Auswahl der passenden t-RNS, das Zusammenfügen der einzelnen
    Proteinbausteine oder das Entsorgen entladener t-RNS, ist ein spezielles Modul des Ribosoms zuständig.
    Um Fehler bei der Synthese der Proteine, von denen einige mehrere tausend Bausteine umfassen,
    weitestgehend zu vermeiden, müssen die einzelnen Module und ihre Arbeitsgänge genau aufeinander
    abgestimmt sein. Dazu bedient sich das Ribosom einer Reihe von Kontrollproteinen, so genannter
    Translationsfaktoren, die nur zu bestimmten Zeitpunkten an die zentrale Maschinerie andocken. Einige
    der Translationsfaktoren funktionieren dabei als molekulare Schalter. Sie tragen kleine, energiereiche
    Moleküle, die während eines Arbeitsganges chemisch gespalten werden. Diese Spaltung zieht eine
    Formveränderung der Faktoren nach sich, die vom Ribosom wahrgenommen wird und den Startschuss
    zur Einleitung des nächsten Arbeitsschrittes gibt. Das Einholen der Translationsfaktoren und das
    Umlegen der molekularen Schalter werden von einer speziellen Schaltzentrale am Ribosom koordiniert.
    Obwohl die Bestandteile dieser Schaltzentrale seit längerem bekannt waren, wusste man bisher wenig
    über die Art und Weise ihrer Funktion.
    Um dieser Funktion auf die Schliche zu kommen, hat die Arbeitsgruppe von Markus Wahl vom
    Max-Planck-Institut für biophysikalische Chemie zunächst ein detailliertes, dreidimensionales Bild dieses
    Ribosomenbereiches erstellt. Sie züchteten Kristalle von Teilen des Schaltzentrums und untersuchten
    deren Streuung im Röntgenlicht. Aus den Streudaten konnten sie die atomare Struktur dieser
    Komponenten auf 0,2 Nanometer genau berechnen. Frank Schlünzen und Jörg Harms am DESY
    ermittelten über ähnliche Verfahren die Verankerung des Schaltzentrums an der großen ribosomalen
    Untereinheit. Wie in einem dreidimensionalen Puzzlespiel passten die Forscher dann alle Teilstrukturen
    in Hüllen des Ribosoms ein, die mithilfe der Elektronenmikroskopie im Arbeitskreis von Holger Stark bei
    etwa zehnfach niedrigerer Auflösung sichtbar gemacht wurden. "Von der großen ribosomalen
    Untereinheit in unmittelbarer Nähe der Stelle, an der die Translationsfaktoren zu liegen kommen,
    erstreckt sich ein langer, beweglicher Fortsatz", beschreibt Markus Wahl das Bild. "An diesem Fortsatz
    sind bis zu sechs flexible Molekülketten aufgehängt, jede mit einem kugelförmigen Kopf." (Abb. 1).
    Im Einklang mit früheren Arbeiten, die darauf hindeuteten, dass die Köpfe die ersten Andockstellen für
    die Translationsfaktoren darstellten, ähnelte die Struktur einer molekularen Angelrute mit sechs Schnüren
    und je einem Köder, mit denen das Ribosom nach Translationfaktoren "fischen" konnte. Die Forscher
    vermuteten außerdem, dass die Köpfe auch an die Ribosom-gebundenen Faktoren heranreichen könnten,
    um deren Schalter umzulegen. Das Labor von Marina Rodnina in Witten testete diese Hypthesen durch
    gezielte Veränderungen an der "Angelrute": Zunächst wurden die "Köder" durch genetische Verfahren
    abgeschnitten. Wie erwartet waren die Angelschnüre ohne Köder erfolglos beim "Fischen" nach
    Faktoren. Auch die Schaltprozesse waren erwartungsgemäß etwa 1000-fach verlangsamt. Dann
    veränderten die Biochemiker gezielt Oberflächenbausteine der Köpfe, die mit den Translationsfaktoren in
    Berührung kommen konnten, und störten somit ihre Funktionsweise. "Unsere Ergebnisse zeigten, dass
    eine ganze Reihe solcher Bausteine gemeinsam für das Einholen der Faktoren und das Umlegen der
    Schalter verantwortlich sind", erklärt Marina Rodnina.
    Da die Fähigkeit zur Proteinsynthese eine elementare Grundlage für alles Leben auf unserer Erde ist,
    kommen Ribosomen in allen Organismen, vom Bakterium bis zum Menschen, vor und ähneln sich in
    ihrem Aufbau. Die bakteriellen Ribosomen weisen jedoch Detailunterschiede zu den Ribosomen höherer
    Organismen auf. So verhindern z.B. einige Antibiotika die Proteinsynthese in Bakterien, aber nicht bei
    Menschen, Tieren oder Pflanzen. Auch die Schaltzentrale des Ribosoms weist Unterschiede zwischen
    Bakterien und höheren Organismen auf. Eine genauere Kenntnis der verschiedenen Translationsprozesse
    könnte daher eine Grundlage zur Neuentwicklung beispielsweise von Medikamenten gegen
    Infektionskrankheiten bieten.


    Bilder

    Merkmale dieser Pressemitteilung:
    Biologie, Informationstechnik
    überregional
    Forschungsergebnisse
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).