idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
29.07.2005 11:28

Die Entdeckung der Langsamkeit im Erdinneren

Stefanie Hahn Abteilung Hochschulkommunikation/Bereich Presse und Information
Friedrich-Schiller-Universität Jena

    Forscher der Universitäten Jena und Bayreuth belegen in aktueller "Science"-Publikation über Diffusionsprozesse im unteren Erdmantel, dass diese Zone heterogener ist als bisher angenommen

    Jena (29.07.05) Es sind Extremereignisse wie Vulkanausbrüche, Erd- oder Seebeben, die uns gewahr werden lassen, dass sich tief unter unseren Füßen etwas regt. Unsere Ozeane und Kontinente ruhen auf riesigen Platten, die sich einige Zentimeter im Jahr bewegen. An bestimmten Stellen schiebt sich eine Platte unter die andere, taucht in das Erdinnere ab und wird dort bei hohem Druck und Temperaturen quasi recycelt. Bisher hatte man angenommen, dass sich die chemischen Zusammensetzungen der abtauchenden Erdplatten und des umgebenden Mantelgesteins rasch angleichen. "Es war eine gängige Hypothese, dass der untere Erdmantel chemisch relativ homogen ist", sagt Prof. Dr. Falko Langenhorst. Der Mineraloge von der Friedrich-Schiller-Universität Jena und Geowissenschaftler der Universität Bayreuth konnten nun zeigen, dass sich der Stoffaustausch im Erdmantel jedoch extrem langsam vollzieht. "Demzufolge ist diese Mantelzone, die etwa 670 km unter der Erdoberfläche beginnt und bis zu einer Tiefe von 2.900 km reicht, vermutlich heterogener als bisher gedacht", sagt Langenhorst. Er und seine Bayreuther Kollegen haben nun erstmals in Experimenten nachvollzogen, wie schnell sich die Elemente im unteren Mantel vermischen können. Sie ermittelten die Diffusionskoeffizienten von Silikat-Perovskit für verschieden hohe Drücke und Temperaturen. Der untere Erdmantel besteht zu 80 % aus Perovskit, dem häufigsten Mineral der Erde. Die Ergebnisse der Diffusionsexperimente werden in der renommierten Zeitschrift "Science" publiziert und sind gestern (28.07.) in Science Express online veröffentlicht worden.

    Um zum Ziel zu gelangen waren aufwendige Hochdruckexperimente nötig, die Dr. Christian Holzapfel, Prof. Dr. David Rubie und Dr. Daniel Frost aus Bayreuth durchführten. Prof. Langenhorst und Dr. Holzapfel bestimmten dann den Elementaustausch im Nanometerbereich mit dem Transmissionselektronenmikroskop. Um die Vorgänge im Erdinneren zu simulieren, waren je zwei zylinderförmige Proben von Silikat-Perovskit mit verschiedenen Konzentrationen von Eisen und Magnesium aneinandergelegt und bis zu 24 Stunden Drücken von 22 bis 26 Gigapascal und Temperaturen zwischen 1.973 und 2.273 Kelvin ausgesetzt worden. "Dabei kommt es zum Ausgleich des Konzentrationsunterschiedes. Denn durch die Brownsche Molekularbewegung bewegen sich die Teilchen, in unserem Falle die Eisen- und Magnesiumionen im Perovskit, von der höheren zur niedrigeren Konzentration", erklärt Langenhorst das zugrundeliegende Prinzip.

    Als die Forscher die Diffusionsprofile untersuchten, stellten sie fest, dass der Bereich, in dem die Eisen- und Magnesiumkonzentrationen begonnen hatten, sich einander anzugleichen, nur zwischen 150 bis 1.500 Nanometer groß war. Das bedeutet, dass der Diffusionsprozess trotz hoher Temperaturen, die ihn eigentlich beschleunigen sollten, extrem langsam vonstatten geht, so das Fazit der Wissenschaftler. "Aus der Länge des Profils, das man erhält, wenn die Proben höchstens einen Tag den Extrembedingungen ausgesetzt sind, lässt sich abschätzen, über welche Entfernungen der Diffusionsprozess in geologischen Zeiträumen in der Natur wirklich abläuft", erklärt Langenhorst. Nach den Messungen der Forscher findet in 4,5 Milliarden Jahren, so alt ist unsere Erde, nur ein Austausch im Maßstab von wenigen Metern statt.

    Neben der Entdeckung der Langsamkeit des Prozesses machen die Autoren der "Science"-Publikation auch Aussagen darüber, warum die Homogenisierung in der Silikat-Perovskit-Schicht so langsam abläuft. Wie bei allen Prozessen ist der langsamste Reaktionsschritt geschwindigkeitsbestimmend für den Gesamtprozess. Die am langsamsten diffundierenden Spezies im Perovskit sind laut der Wissenschaftler die divalenten Kationen Eisen und Magnesium. Diese "Bummelanten" sorgen dafür, dass der Diffusionsprozess insgesamt langsam abläuft. Damit haben die Forscher ein weiteres Rätsel um die Recycling-Vorgänge im Erdinneren gelöst. "Auch wenn diese Diffusionsprozesse unmerklich langsam vor sich gehen, so gibt es durch die mechanische Umwälzung des Mantels einen steten Stoffaustausch zwischen Erdinnerem und -äußerem, der sicherlich dazu beigetragen hat, dass Leben auf der Erde entstehen konnte", macht Prof. Langenhorst deutlich.

    Zur Diffusion:
    Diffusion ist der Ausgleich eines Konzentrationsunterschiedes von gasförmigen oder gelösten Stoffen oder Energie, bei dem sich die Teilchen im statistischen Mittel durch Brownsche Molekularbewegung temperaturabhängig von der höheren zur niedrigeren Konzentration bewegen. Die Diffusion ist passiv und unspezifisch, d.h. einzelne Teilchen bewegen sich zufällig und ungerichtet. Bei höheren Temperaturen geht sie jedoch schneller vor sich. Sind in einem Raum Teilchen oder Energie ungleichmäßig verteilt, dann führt die ungeordnete thermische Bewegung der Teilchen mit der Zeit dazu, dass sie in diesem Raum statistisch gleichmäßig verteilt sind, ihre Konzentration also an jedem Messpunkt im Raum gleich hoch ist.

    Die Originalpublikation: C. Holzapfel, D. C. Rubie, D. J. Frost & F. Langenhorst: "Fe-Mg Interdiffusion in (Mg,Fe) SiO3 Perovskite and Lower Mantle Reequilibration"; Science Express 28.07.2005 (DOI: 10.1126/science.1111895),

    Kontakt:
    Prof. Dr. Falko H. Langenhorst
    Institut für Geowissenschaften der Universität Jena
    Burgweg 11, 07749 Jena
    E-Mail: Falko.Langenhorst@uni-jena.de


    Weitere Informationen:

    http://www.sciencemag.org/cgi/content/abstract/1111895v1


    Bilder

    Prof. Langenhorst (vorne) am Transmissionselektronenmikroskop.
    Prof. Langenhorst (vorne) am Transmissionselektronenmikroskop.
    Foto: Scheere/Fotozentrum Uni Jena
    None

    Hochauflösendes TEM-Bild der atomaren Struktur eines Perovskits.
    Hochauflösendes TEM-Bild der atomaren Struktur eines Perovskits.
    Foto: Langenhorst
    None


    Merkmale dieser Pressemitteilung:
    Biologie, Chemie, Geowissenschaften, Mathematik, Physik / Astronomie, Werkstoffwissenschaften
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    Prof. Langenhorst (vorne) am Transmissionselektronenmikroskop.


    Zum Download

    x

    Hochauflösendes TEM-Bild der atomaren Struktur eines Perovskits.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).