idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
04.11.2005 10:32

Dem Stahl auf seinen kristallinen Grund gehen

Thomas Götz Unternehmenskommunikation und Institutsstrategie
Fraunhofer-Institut für Werkstoffmechanik IWM

    Freiburg/Düsseldorf - Neuartige, sehr viel präzisere Simulationsmodelle für Metalle und metallische Bauteile will eine neu gegründete Arbeitsgruppe entwickeln: Das Max-Planck-Institut für Eisenforschung MPIE in Düsseldorf und das Fraunhofer-Institut für Werkstoffmechanik IWM in Freiburg erhielten jetzt den Segen ihrer Vorstände. Sie werden in den kommenden drei Jahren mathematische Beschreibungen von Metallen aus der Grundlagenforschung mit der anwendungsorientierten Simulation von Fertigungsprozessen und Bauteilen für die industrielle Praxis zusammenzuführen. Die Max-Planck-Gesellschaft investiert knapp eine halbe Million Euro, die Fraunhofer-Gesellschaft knapp eine Million Euro in die Entwicklung neuer so genannter Vielkristall-Simulationsmodelle.

    Das Simulieren, also das Vorausberechnen des Bauteilverhaltens ist in der Produktentwicklung heute gang und gäbe. Simulationen zeigen, ob ein Bauteil den Belastungen standhält oder wo die Fertigung optimiert werden muss, um spätere Schäden zu vermeiden. Aber gerade Metalle sind nicht immer gleich. "Ein einziges Blech kann völlig unterschiedliche Werkstoffeigenschaften haben, je nachdem, wo und wie es verformt wurde", erläutert Professor Peter Gumbsch, Leiter des Fraunhofer-Instituts in Freiburg. Das aber berücksichtigen Simulationsmodelle heute noch nicht richtig: "Die Genauigkeit ist oft unzureichend, aber die empirischen Methoden sind ausgereizt", beschreibt Gumbsch die Lage der Modellentwickler.

    Dabei gibt es den Blick in die Tiefe des kristallinen Verhaltens schon: Professor Dierk Raabe, Direktor am Max-Planck-Instituts für Eisenforschung MPIE in Düsseldorf, und seine Kollegen untersuchen das Verhalten vieler einzelner Kristallite im Metall. Sie beschreiben zum Beispiel verformungsinduzierte Umwandlungen und Zwillingseffekte. "Aber ein Bauteil besteht aus mehreren Milliarden Einzelkristallen, die unmöglich alle einzeln verfolgt werden können. Eine gewisse Ordnung kommt nun dadurch hinein, dass diese Kristalle sich, je nach Belastung, etwa wenn ein Blech verformt oder ein Draht gezogen wird, unterschiedlich umordnen. Hier gilt es intelligente Verfahren zu entwickeln, die in der Lage sind diese Umorientierung zu verfolgen" beschreibt Dierk Raabe den schier unfassbaren Umfang der rechnerischen Aufgabe für die industrielle Anwendung.

    Kein Wunder also, dass die rechnerische Voraussage darüber, wie lange ein Vergaser dem Belastungswechsel standhält, wie Schäden an Wolframdrähten in Glühbirnen entstehen und vermieden werden, und wie ein Karosserieteil nach einem Zusammenstoß aussieht, vom Fraunhofer IWM bislang ohne Einbeziehung der detaillierten Kristallinformationen gelöst wurde. Die gemeinsame Arbeitsgruppe soll dazu dienen, die Theorie der Vielkristallmechanik zu vertiefen und andererseits den Transfer der Erkenntnis aus der Grundlagenforschung in die industrielle Anwendung zu gewährleisten. "Unsere Hauptaufgabe wird das Abspecken der kristallmechanischen Modelle an der richtigen Stelle und das Zusammenführen von numerischen Modellen auf unterschiedlichen Größenskalen sein. Der Gewinn für unsere Industriepartner muss darin liegen, dass mit vertretbarem Mehraufwand zusätzliche Informationen über das Werkstoffverhalten zugänglich werden", beschreibt IWM-Institutsleiter Gumbsch, was sich das Fraunhofer IWM in den kommenden drei Jahren vorgenommen hat.

    Ziel ist die Entwicklung von Multiskalen-Modellen. Sie verbinden die mathematischen Beschreibungen des Werkstoffverhaltens auf völlig unterschiedlichen Ebenen. Während übliche Finite-Elemente-Modelle das Bauteil in millimetergroße Stücke zerteilen und deren Verhalten berechnen, gilt es nun, Texturmodelle für Korngrößen im Mikrometermaßstab und Modelle auf der Ebene einzelner Kristalle jeweils ineinander zu verschränken, ohne den Bedarf an Rechnerleistung zu hoch schrauben zu müssen.

    Der Bedarf an solchen Multiskalen-Simulationsmodellen ist groß: Das Bauteilverhalten kristalliner Werkstoffe aus Metall ist heute in der Mikrosystemtechnik genauso wichtig wie im Automobilsektor, in der Medizintechnik oder der Elektrotechnik.


    Weitere Informationen:

    http://www.iwm.fraunhofer.de/presse


    Bilder

    Merkmale dieser Pressemitteilung:
    Werkstoffwissenschaften
    überregional
    Forschungsergebnisse, Forschungsprojekte
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).