idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Medienpartner:
Wissenschaftsjahr


Teilen: 
20.04.2006 08:34

Gammastrahlen lichten den Nebel im intergalaktischen Raum

Dr. Michael Schwarz Kommunikation und Marketing
Ruprecht-Karls-Universität Heidelberg

    Messungen der Strahlung von zwei fernen Quasaren zeigen, dass der Raum zwischen den Galaxien transparenter für Gammastrahlen ist als bisher erwartet - Wissenschaftler aus Heidelberg und Paris veröffentlichen ihre unerwarteten Ergebnisse in der neuen Ausgabe von "Nature"

    Mit den H.E.S.S.-Gammastrahlen-Teleskopen in Namibia konnten Astrophysiker erstmals sehr hochenergetische Gammastrahlung von zwei recht weit entfernten Quasaren - das sind aktive Galaxien - messen. Aus diesen Messungen folgt, dass das Universum transparenter für diese Art Gammastrahlung ist, als man bisher angenommen hat. Die Gammastrahlung wird von den gewaltigsten Objekten im Universum erzeugt. Auf ihrem langen Weg von fernen Orten zur Erde werden sie absorbiert, wenn sie mit einem "normalen" Photon etwa im
    sichtbaren oder infraroten Wellenlängenbereich zusammentreffen. Dieser Hintergrund oder Nebel aus Licht erfüllt das gesamte Universum und ist ein Überrest all des Lichts, das im Universum während dessen gesamten Alters jemals ausgestrahlt wurde. Und zwar Licht von der Entstehung der allerersten Sterne und Galaxien bis in die heutige Zeit. Die Astrophysiker nutzten die fernen Quasare als Sonden und studierten, wie jenes fossile Licht die Energieverteilung der Gammastrahlung modifizierte. Daraus folgte eine Obergrenze für die Menge des Lichts, die deutlich niedriger ausfällt, als in bisherigen Abschätzungen erwartet wurde. Das Ergebnis, das am 20. April im Wissenschaftsmagazin "Nature" veröffentlicht wird, hat nachhaltige Konsequenzen auf unser Verständnis der Galaxienbildung und -entwicklung und erweitert den sichtbaren Horizont des Gammastrahlen-Universums.

    Die Suche nach der Geschichte der Licht-Emission im gesamten Universum

    Licht wird von allen Arten von Objekten - Sternen, Galaxien, Quasaren...- im Universum zu allen Zeiten emittiert. Das Licht durchdringt gleichmäßig den gesamten intergalaktischen Raum und wird daher auch als "diffuses extragalaktisches Hintergrundlicht" (engl.: extragalactic background light, EBL) bezeichnet. Wissenschaftler haben lange versucht, diese fossile Aufzeichnung der Licht-Emission im Universum zu messen. Seine direkte Bestimmung aus dem gleichmäßigen Leuchten am Nachthimmel ist aber unglaublich schwierig und äußerst ungenau, da Atmosphäre, Sonnensystem und Milchstraße viel heller leuchten.

    Die sehr hochenergetische Gammastrahlung bietet eine alternative Möglichkeit, das Hintergrund-Licht zu ermitteln. Die Forscher der internationalen H.E.S.S.-Kollaboration haben mehrere Quasare (die leuchtkräftigsten Quellen hochenergetischer Gammastrahlung) mit diesem Ziel beobachtet. Das Ergebnis war geradezu umwerfend.

    Der Nebel der intergalaktischen Photonen

    Wenn die sehr hochenergetischen Gammastrahlen mit Licht bei Wellenlängen nahe dem sichtbaren Bereich zusammenstoßen, kann Materie erzeugt werden. Und zwar wird jeweils ein Elektron-Positron-Paar gebildet. Die Gammastrahlen von einer fernen Galaxie werden auf ihrem Weg zur Erde abgeschwächt, da es zu Zusammenstößen mit den Photonen des diffusen Lichts kommen kann. Dieser Effekt ist stärker für energiereichere Gammastrahlen, und das ursprüngliche Gamma-Spektrum wird "röter", etwa so wie die Sonne bei Sonnenuntergang röter aussieht, weil das blaue Licht in der
    Atmosphäre stärker gestreut wird als das rote Licht. Da die "Rötung" von der Dicke des Absorbers abhängt (in diesem Fall der Intensität der Hintergrund-Photonen), wird die Messung der Dicke möglich.

    Die Messung des Photonen-Nebels

    "Das Haupt-Problem dabei ist, dass die Verteilung der Gamma-Energien (das Spektrum) von Quasaren viele verschiedene Formen annehmen kann, und bisher konnten wir nicht wirklich sagen, ob ein beobachtetes Spektrum "rot" aussieht, weil es einer starken Rötung ausgesetzt war, oder ob es schon am Ursprung so aussah", sagt Dr. Luigi Costamante, einer der an dieser Entdeckung beteiligten Forscher. Aber die Gamma-Spektren von diesen zwei Quasaren namens H 2356-309 und 1ES 1101-232 haben einen Durchbruch ermöglicht. Die beiden Quasare sind weiter entfernt als bisherige Quellen und konnten nur dank der unerreichten Empfindlichkeit des H.E.S.S.-Instruments gemessen werden. Ihre Spektren sind zu "blau" (d.h. sie enthalten zu viele Gammastrahlen am hochenergetischen Ende des gemessenen Bereichs) um mit der bei hoher Intensität des Hintergrund-Lichts zu erwartenden starken Rötung verträglich zu sein. Ohne noch problematischere oder ganz exotische Szenarien ins Spiel zu bringen, ist die wahrscheinlichste Schlussfolgerung die, dass die Intensität des fossilen Lichts deutlich geringer ist als bisher geglaubt.

    Erweiterung des Gammastrahlen-Horizonts des Universums

    Die Grenze auf die maximale Intensität des diffusen Lichts, die man aus den H.E.S.S.-Daten ableiten kann, ist in der Tat sehr nahe an der unteren Grenze, die sich aus der Summe des Lichtes einzelner Galaxien ergibt, die wir mit optischen Teleskopen wie dem Hubble-Weltraumteleskop sehen. Dies liefert eine Antwort auf eine der Fragen, die Wissenschaftler schon seit einigen Jahren verwirrt hat: wird das diffuse Licht vor allem von der Strahlung der allerersten Sterne im Universum bestimmt, als das Universum nur wenige hundert Millionen Jahre alt war? Das Ergebnis von H.E.S.S. scheint eine solche Möglichkeit auszuschließen und lässt ebenfalls wenig Spielraum für wesentliche Beiträge anderer Arten von Quellen als normalen Galaxien.

    Ein besserer Durchblick durch den intergalaktischen Raum eröffnet zudem neue Perspektiven für die Untersuchung von Gamma-Quellen außerhalb unserer eigenen Galaxie. Die H.E.S.S.-Wissenschaftler werden weiterhin den Gammastrahlen-Himmel erforschen, jetzt wo sie wissen, dass sie bis in größere Entfernungen sehen können als bisher gedacht.

    Rückfragen bitte an:

    Dr. Luigi Costamante
    Dr. Felix Aharonian
    Max-Planck-Institut für Kernphysik
    Saupfercheckweg 1
    69117 Heidelberg, Deutschland
    Tel. +49 6221 516470 & +49 6221 516485

    Dr. Michael Punch
    AstroParticule et Cosmologie
    Collège de France
    11 place Marcelin Berthelot
    75231 Paris Cedex 05, Frankreich
    Tel. +33 1 44271545

    Prof. Stefan Wagner
    Zentrum für Astronomie der Universität Heidelberg (ZAH)
    Landessternwarte Königstuhl
    69117 Heidelberg, Deutschland
    Tel. +49 6221 541712

    für allgemeine Anfragen von Journalisten:
    Dr. Michael Schwarz
    Pressesprecher der Universität Heidelberg
    Tel. +49 6221 542310, Fax 542317
    michael.schwarz@rektorat.uni-heidelberg.de


    Merkmale dieser Pressemitteilung:
    Mathematik, Physik / Astronomie
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).