idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
25.07.2006 09:52

Zehnmal heißer als das Innere der Sonne

Thomas Gazlig Kommunikation und Außenbeziehungen
Hermann von Helmholtz-Gemeinschaft Deutscher Forschungszentren

    Wissenschaftler entwickeln neuartige Heizung für den Fusionstestreaktor ITER und erhalten den Schrödinger Preis 2006

    Was in der Sonne bei nur sechs Millionen Grad Celsius schon seit Ewigkeiten funktioniert, verlangt auf Erden große Anstrengungen: Hier ist die Kernfusion, bei der Wasserstoffatome zu Helium verschmelzen und dabei Energie freisetzen, viel schwerer zu starten. Der Brennstoff in einem späteren Fusionskraftwerk - ein Wasserstoff-Plasma - muss zunächst auf über 100 Millionen Grad aufgeheizt werden. Dies gelingt zum Beispiel durch Einschießen schneller Wasserstoff-Teilchen in das Plasma. Wissenschaftler des Max-Planck-Instituts für Plasmaphysik (IPP) in Garching haben eine solche Heizung für die extremen Anforderungen des Testreaktors ITER weiterentwickelt. Dafür zeichnet die Helmholtz-Gemeinschaft Dr. Eckehart Speth, Dr. Hans-Dieter Falter, Dr. Peter Franzen, Dr. habil. Ursel Fantz und Dr. Werner Kraus, IPP, mit dem Erwin Schrödinger-Preis 2006 aus. Die mit 50.000 Euro dotierte Auszeichnung wird jährlich für herausragende interdisziplinäre Forschung vergeben.

    "Die von den diesjährigen Preisträgern entwickelte Quelle für negative Ionen kann die hohen, von ITER gestellten Forderungen im Wesentlichen erfüllen. Keine andere Ionenquelle weltweit kann mit ihrer Entwicklung konkurrieren. So hat das neue Konzept gute Chancen, 2007 für den Einsatz bei ITER ausgewählt zu werden. Dabei ist es den Preisträgern hervorragend gelungen, die Disziplinen Plasmachemie, Oberflächenphysik und Elektrotechnik zu verbinden und so einen wirklichen Durchbruch zu erreichen", erklärte Prof. Dr. Johanna Stachel vom Physikalischen Institut der Universität Heidelberg, Mitglied der Jury. Den Preis wird Prof. Dr. Jürgen Mlynek anlässlich der Jahrestagung der Helmholtz-Gemeinschaft am 13. September 2006 in Berlin überreichen.

    Die internationale Testanlage ITER (lat. "der Weg"), deren Bau in Cadarache/Südfrankreich kürzlich beschlossen wurde, ist der nächste große Schritt der weltweiten Fusionsforschung. Mit 500 Megawatt erzeugter Fusionsleistung soll ITER erstmals zeigen, dass ein Energie lieferndes Fusionsfeuer möglich ist. Ziel ist es, ein Kraftwerk zu entwickeln, das - ähnlich wie die Sonne - aus der Verschmelzung von Atomkernen Energie gewinnt. Dazu muss der Brennstoff - ein dünnes ionisiertes Wasserstoffgas, ein "Plasma" - berührungsfrei in einem Magnetfeldkäfig eingeschlossen und bis zum Zünden der Fusionsreaktionen auf hohe Temperaturen aufgeheizt werden. Etwa zur Hälfte soll das ITER-Plasma per "Neutralteilchen-Heizung" geheizt werden: Schnelle Wasserstoffatome, die in das Plasma eingeschossen werden, geben beim Zusammenstoßen mit den Plasmateilchen ihre Energie ab. Heutige Anlagen erreichen so auf Knopfdruck ein Mehrfaches der Sonnentemperatur.

    Um in diesen Heizapparaturen Wasserstoffatome beschleunigen zu können, müssen sie zunächst als geladene Teilchen - als positive oder negative Ionen - für elektrische Kräfte greifbar werden. In den bisherigen Heizanlagen werden ausschließlich positiv geladene Ionen genutzt: Neutralem Wasserstoffgas werden dazu die Elektronen entzogen, die positiv geladenen Wasserstoffionen werden abgesaugt und beschleunigt. Vor dem Einschießen in das Fusionsplasma muss der Ionenstrahl jedoch wieder neutralisiert werden, weil geladene Teilchen durch das Magnetfeld des Plasmakäfigs abgelenkt würden: Dazu durchlaufen die Ionen einen Gasvorhang. Hier nehmen die Ionen das fehlende Elektron wieder auf und schießen als schnelle Neutrale in das Plasma.

    Mit ITER kommen nun neue Anforderungen auf dieses bewährte Verfahren zu: Zum Beispiel müssen für die Großanlage ITER die Teilchen noch drei- bis viermal schneller sein als bisher, damit sie tief genug in das Plasma hinein fliegen können. Deshalb kann man nicht mehr mit positiv geladenen Ionen arbeiten. Denn unglücklicherweise lassen sie sich umso schlechter neutralisieren, je schneller sie sind - bei den für ITER gewünschten Geschwindigkeiten von 9000 Kilometern pro Sekunde fast gar nicht mehr. Für ITER muss man daher zu negativ geladenen Ionen übergehen, die auch bei hohen Geschwindigkeiten gut neutralisierbar sind. Sie lassen sich allerdings wesentlich schwieriger handhaben als positive Ionen: Das zusätzliche Elektron, das für die negative Ladung der Partikel verantwortlich ist, ist nur locker gebunden und entsprechend leicht wieder zu verlieren.

    Um die fragilen Objekte für ITER herzustellen, sind so genannte Hochfrequenz-Plasmaquellen besonders geeignet. Aufbauend auf Vorarbeiten an der Universität Gießen wurde die neuartige Ionenquelle im IPP entwickelt und ist seit 1995 am IPP-Experiment ASDEX Upgrade in Betrieb - allerdings für positive Ionen. Seit 2002 arbeiten Dr. Eckehart Speth und seine Mitarbeiter im IPP daran, die neue Strahlquelle für negative Ionen weiterzuentwickeln. Dies geschah gemeinsam mit der Universität Augsburg. Dort arbeitete Dr. Ursel Fantz zusammen mit ihren Mitarbeitern an anspruchsvollen Diagnostik- und Modellierungsmethoden für das gemeinsame Projekt.

    Ihren Namen hat die neuartige Quelle von einer Hochfrequenzwelle, die in Wasserstoffgas eingestrahlt wird und dabei einen Teil der Wasserstoffatome ionisiert. Das entstehende kalte Plasma, eine Mischung neutraler Atome, negativer Elektronen und positiver Ionen, strömt in die eigentliche Strahlquelle, auf deren Innenwände und auf eine erste gitterförmige Elektrode. Ist deren Oberfläche mit geeignetem Material belegt, etwa mit Cäsium, dann können dort von den Plasmateilchen Elektronen aufgenommen werden - es entstehen die gewünschten negativen Wasserstoffionen. Nachdem die Wissenschaftler die komplizierte Dynamik der Cäsium-Verteilung auf den Wänden ergründet hatten, kann es hier mittlerweile kontinuierlich von einem kleinen Ofen als ultradünne, etwa eine Atomlage starke Schicht aufgedampft werden.

    Die erzeugten negativen Ionen in der Nähe des Gitters können nun aus der Strahlquelle heraus gelenkt werden. Sie werden anschließend durch das elektrische Feld eines zweiten Gitters erfasst, zum Strahl gebündelt und mit einem dritten Gitter weiter beschleunigt. Mit den bisherigen Ergebnissen - teilweise Weltrekord - hat die Hochfrequenz-Quelle des IPP bereits gute Chancen, bei ITER zum Zuge zu kommen. Für eine endgültige Beurteilung muss noch die Übertragbarkeit der Technologie auf ITER-Größe gezeigt werden. Die Entscheidung über eine Verwendung bei ITER wird für Mitte 2007 erwartet. Aber auch auf anderen Gebieten könnte die neue Ionenquelle Anwendung finden, zum Beispiel in Beschleunigern oder zur Herstellung großflächiger Plasmen für die industrielle Nutzung. (Text: Isabella Milch)

    Die Helmholtz-Gemeinschaft leistet Beiträge zur Lösung großer und drängender Fragen von Gesellschaft, Wissenschaft und Wirtschaft durch wissenschaftliche Spitzenleistungen in sechs Forschungsbereichen: Energie, Erde und Umwelt, Gesundheit, Schlüsseltechnologien, Struktur der Materie, Verkehr und Weltraum. Die Helmholtz-Gemeinschaft ist mit 25.000 Mitarbeiterinnen und Mitarbeitern in 15 Forschungszentren und einem Jahresbudget von rund 2,2 Milliarden Euro die größte Wissenschaftsorganisation Deutschlands. Ihre Arbeit steht in der Tradition des großen Naturforschers Hermann von Helmholtz (1821-1894).

    Ansprechpartner für die Medien:

    Helmholtz-Gemeinschaft:

    Thomas Gazlig
    Leiter Kommunikation und Medien
    Dr. Ellen Peerenboom
    Büro Berlin
    Anna-Louisa-Karsch-Straße 2
    10178 Berlin
    Tel/Fax: 030 206 329-57/60
    presse@helmholtz.de

    IPP:

    Dr. Isabella Milch
    Boltzmannstraße 2
    85748 Garching
    Tel/Fax: 089 3299-1288/2622
    info@ipp.mpg.de


    Weitere Informationen:

    http://www.helmholtz.de


    Bilder

    Foto: Die Preisträger und ihre prämierte Entwicklung, eine Hochfrequenz-Ionenquelle zur Plasmaheizung (von links nach rechts): Dr. Ursel Fantz, Dr. Hans-Dieter Falter, Dr. Eckehart Speth, Dr. Peter Franzen, und Dr. Werner Kraus.
    Foto: Die Preisträger und ihre prämierte Entwicklung, eine Hochfrequenz-Ionenquelle zur Plasmaheizun ...

    None


    Merkmale dieser Pressemitteilung:
    Biologie, Chemie, Elektrotechnik, Energie, Informationstechnik, Mathematik, Physik / Astronomie
    überregional
    Forschungsergebnisse, Organisatorisches
    Deutsch


     

    Foto: Die Preisträger und ihre prämierte Entwicklung, eine Hochfrequenz-Ionenquelle zur Plasmaheizung (von links nach rechts): Dr. Ursel Fantz, Dr. Hans-Dieter Falter, Dr. Eckehart Speth, Dr. Peter Franzen, und Dr. Werner Kraus.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).