idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
03.09.2006 17:48

Schnelle Transistoren mit Oxiden

Klaus P. Prem Stabsstelle Kommunikation und Marketing
Universität Augsburg

    Physiker der Universität Augsburg ersetzen herkömmliche Halbleitermaterialien durch Kristalle aus Oxiden.
    -----

    Bauteile in der Mikroelektronik werden immer kleiner und leistungsfähiger. Herkömmliche, auf gewöhnlichen Halbleitern basierende Transistoren werden jedoch bald an die Grenzen der Miniaturisierung stoßen. Wie die Zeitschrift "Science" in ihrer neuesten Ausgabe von Science Express vorstellt, haben jetzt Physiker des Centers for Electronic Correlations and Magnetism (EKM), des Sonderforschungsbereichs 484 "Kooperative Phänomene im Festkörper" der Universität Augsburg, sowie der Penn State University, Pennsylvania (USA) einen neuen Weg zur Verkleinerung von Transistoren eingeschlagen. Sie haben gezeigt, dass sich besonders schnelle Transistoren, so genannte High-Electron-Mobility Transistoren (HEMTs), die normalerweise aus gewöhnlichen Halbleitern wie Silizium oder Galliumarsenid aufgebaut werden, auch mit Oxiden realisieren lassen. Der große Vorteil der Oxide gegenüber Halbleitern besteht darin, dass sich die Oxide mit Materialeigenschaften herstellen lassen, wie zum Beispiel mit einer besonders hohen Dichte von Elektronen, die man mit Halbleitern nicht erzielen kann. Durch die Verwendung von Oxiden könnte in Zukunft eine noch stärkere Miniaturisierung dieser Transistoren möglich werden (Science Express, 24. August 2006).

    Fügt man zwei Schichten aus verschiedenen Oxiden zusammen, so kann sich zwischen ihnen eine hauchdünne Grenzschicht ausbilden, die aus einer Elektronengaswolke besteht. In dieser Grenzschicht, die nur zwei Nanometer dünn ist, befinden sich die Elektronen in einem Quantenzustand, der die Bewegung senkrecht zu den Schichten blockiert. Dadurch kann dort der Strom nur parallel zu den Schichten fließen. Die Elektronen bilden also ein zweidimensionales Elektronengas. Aus diesem Grund sind sie sehr beweglich und schnell.

    Die Augsburger Physiker haben nun eine solche Grenzschicht zwischen den Oxiden Strontiumtitanat und Lanthanaluminat untersucht. Dazu stellten sie mittels eines Hochleistungslasers Doppelschichten dieser Oxide her, deren Dicke sie auf atomarer Skala genau einstellen konnten. Die Wissenschaftler fanden heraus, dass sich die Leitfähigkeit des Elektronengases mit der Dicke der oberen Oxidschicht (Lanthanaluminat) sprunghaft ändert. Nachdem die Forscher eine, zwei oder drei Kristalllagen aus Lanthanaluminat, aufgebracht hatten, bildete sich eine hochgradig isolierende Grenzschicht. Eine Kistalllage ist hierbei nur 0,4 Nanometer dick. Beträgt die Dicke der Lanthanaluminat-Schichten aber vier Kristalllagen oder mehr, wird die Grenzschicht schlagartig leitfähig, dann allerdings sehr gut.

    Wie die Augsburger Forscher vorschlagen, lässt sich dieses sprunghafte Verhalten hervorragend zum Bau von HEMTs nutzen. Da das Elektronengas in den Kristallen mit den drei Lagen zwar perfekt isolierend, aber dennoch fast leitfähig ist, lässt es sich überaus leicht durch eine elektrische Spannung die senkrecht zur Grenzfläche angelegt wird, in den leitfähigen Zustand schalten. Damit kann die gesamte Anordnung als Transistor verwendet werden und so als Verstärker und Schalter von elektrischen Strömen dienen.

    Damit konnten die Augsburger Physiker S. Thiel, G. Hammerl, C. W. Schneider und J. Mannhart zusammen mit ihrem Kollegen A. Schmehl von der Penn State University zeigen, dass High-Electron-Mobility Transistoren nicht nur mit herkömmlichen Halbleitermaterialien, wie zum Beispiel Galliumarsenid, funktionieren, sondern auch mit Oxiden. Die Oxid-HEMTs bieten hierbei ganz neue Perspektiven zur Miniaturisierung, da mehr Elektronen in der Grenzschicht zwischen den Lagen vorhanden sind und das Schalten in den leitfähigen Zustand durch einen so genannten Quantenphasenübergang noch verstärkt wird.

    "Mit unseren Versuchen wollen wir neue Perspektiven in der Oxidelektronik eröffnen", sagt Professor Jochen Mannhart, Inhaber des Lehrstuhls für Experimentalphysik VI der Universität Augsburg. "Zudem wird es wohl dadurch vielleicht möglich, Transistoren in der Mikroelektronik noch kleiner und effizienter als bisher zu bauen." (Thorsten Naeser)
    _________________________________

    Siehe auch http://www.physik.uni-augsburg.de/exp6/publications/publications/publications_e....
    _________________________________

    KONTAKT UND WEITERE INFORMATIONEN

    Prof. Dr. Jochen Mannhart
    Lehrstuhl Experimentalphysik VI/EKM
    Sonderforschungsbereich 484 (Kooperative Phänomene im Festkörper: Metall-Isolator-Übergänge und Ordnung mikroskopischer Freiheitsgrade)
    Universität Augsburg
    Tel.: +49 (0) 821 598 3651
    Fax: +49 (0) 821 598 3652
    jochen.mannhart@physik.uni-augsburg.de


    Weitere Informationen:

    http://www.physik.uni-augsburg.de/exp6 - Lehrstuhl Mannhart
    http://www.physik.uni-augsburg.de/exp5/ekm/ekm.shtml - Center for Electronic Correlations and Magnetism (EKM)
    http://www.physik.uni-augsburg.de/sfb484/ - SFB 484


    Bilder

    Stefan Thiel, Mitarbeiter in der Dünnfilmgruppe des Lehrstuhls Mannhart, konnte zusammen mit seinen Kollegen zeigen, dass sich HEMTs auch mit Oxiden realisieren lassen.
    Stefan Thiel, Mitarbeiter in der Dünnfilmgruppe des Lehrstuhls Mannhart, konnte zusammen mit seinen ...

    None

    Die Goldkontakte an den Rändern der Probe sind etwa 200 Mikrometer breit. Das Elektronengas befindet sich unter den Stegen.
    Die Goldkontakte an den Rändern der Probe sind etwa 200 Mikrometer breit. Das Elektronengas befindet ...
    Fotos: Thorsten Naeser
    None


    Merkmale dieser Pressemitteilung:
    Elektrotechnik, Energie, Mathematik, Physik / Astronomie, Werkstoffwissenschaften
    überregional
    Forschungsergebnisse
    Deutsch


     

    Stefan Thiel, Mitarbeiter in der Dünnfilmgruppe des Lehrstuhls Mannhart, konnte zusammen mit seinen Kollegen zeigen, dass sich HEMTs auch mit Oxiden realisieren lassen.


    Zum Download

    x

    Die Goldkontakte an den Rändern der Probe sind etwa 200 Mikrometer breit. Das Elektronengas befindet sich unter den Stegen.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).