idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
04.10.2006 19:00

Quantenteleportation zwischen Licht und Materie

Dr. Olivia Meyer-Streng Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik

    Das Konzept der Quantenteleportation - der "spukhaften" vollständigen Übertragung des Zu-standes eines Quantensystems an einen beliebigen anderen Ort - wurde experimentell zunächst zwischen zwei verschiedenen Lichtstrahlen verwirklicht. Später gelang es auch, die Eigenschaften eines gespeicherten Ions auf ein anderes gleichartiges Objekt zu übertragen. Ein Team von Wissenschaftlern um Prof. Ignacio Cirac am MPQ sowie um Prof. Eugene Polzik am Niels-Bohr-Institut in Kopenhagen hat jetzt gezeigt, dass die Quantenzustände eines Lichtpulses auch auf ein makroskopisches Objekt, ein Ensemble aus 1012 Atomen, transferiert werden können. (Nature, 4. Oktober 2006). Damit ist erstmals die Teleportation zwischen Objekten unterschiedlicher Natur gelungen, die einerseits "fliegende" (Licht) bzw. "stationäre" Medien (Atome) rep-räsentieren. Das hier vorgestellte Ergebnis ist nicht nur für die Grundlagenforschung interessant, sondern vor allem auch für die praktische Anwendung bei der Realisierung von Quanten-Computern oder der Übermittlung verschlüsselter Daten (Quantenkryptographie).

    Seit Beginn der 90er Jahre hat die Erforschung der Quantenteleportation bei theoretischen und experimentellen Physikern Hochkonjunktur. Bei der Übermittlung von Quanteninformationen tritt ein grundsätzliches Problem auf: Nach der Heisenbergschen Unschärferelation lassen sich zwei komplementäre Eigenschaften eines Quantenteilchen - etwa Ort und Impuls - nicht gleichzeitig präzise mes-sen. Die gesamte Information des Systems muss also übertragen werden, ohne dass man sie vollstän-dig kennt. Doch die Natur der Teilchen hält auch die Lösung für dieses Problem bereit: Sie liegt in der Möglichkeit, zwei Teilchen miteinander so zu "verschränken", dass deren Eigenschaften perfekt korre-liert sind. Misst man eine bestimmte Eigenschaft an einem der "Zwillingsteilchen", so ist damit die entsprechende Eigenschaft des anderen automatisch und mit sofortiger Wirkung festgelegt.

    Mit Hilfe verschränkter Teilchen lässt sich eine erfolgreiche Quantenteleportation in etwa folgender-maßen durchführen: Man erzeugt ein Hilfspaar von miteinander verschränkten Teilchen, die jeweils an "Alice" bzw. "Bob" verschickt werden. (Die Bezeichnungen "Alice" und "Bob" haben sich eingebür-gert, um das Versenden von Quanteninformationen von A nach B zu beschreiben). Alice verschränkt nun das Objekt, das sie teleportieren will, mit einem der Hilfsteilchen, und misst anschließend den gemeinsamen Zustand (Bell Messung). Das Ergebnis schickt sie auf klassischem Weg an Bob. Der wendet es auf sein Hilfsteilchen an und "zaubert" daraus - das Teleportationsobjekt.

    Handelt es sich bei solchen "Gebrauchsanleitungen" um bloße Gedankenspiele? Die große Herausfor-derung für theoretische Physiker besteht darin, Konzepte auszuarbeiten, die sich auch in die Praxis umsetzen lassen. Das hier beschriebene Experiment, das von einem Forscherteam um Prof. Eugene Polzik am Niels-Bohr-Institut in Kopenhagen durchgeführt wurde, geht auf einen Vorschlag von Prof. Ignacio Cirac, geschäftsführender Direktor am MPQ, und seinem Mitarbeiter Dr. Klemens Hammerer (damals ebenfalls MPQ, seit kurzem Universität Innsbruck) zurück.

    Zunächst wird das "Zwillings-Pärchen" erzeugt, indem ein starker Lichtpuls auf ein mit Cäsiumgas (etwa 1012 Atome) gefülltes Glasröhrchen geschickt wird. Die magnetischen Momente der Gasatome werden in einem homogenen Magnetfeld ausgerichtet. Auch das Licht hat eine Vorzugsrichtung: es ist polarisiert, d.h. das elektrische Feld schwingt nur in einer Richtung. Unter diesen Bedingungen treten Licht und Atome miteinander in Wechselwirkung, so dass der nach dem Gang durch das Gas austre-tende Lichtpuls, der an Alice geschickt wird, mit dem Ensemble von 1012 Cäsiumatomen, das sich bei Bobs Aufenthaltsort befindet, "verschränkt" ist.

    Alice mischt den ankommenden Puls mit Hilfe eines Strahlteilers mit dem Objekt, das sie teleportieren will: einem schwachen, nur wenige Photonen enthaltenden Lichtpuls. Die resultierenden Lichtpulse an den beiden Ausgängen des Strahlteilers werden mit Photodetektoren gemessen, und die Messergebnis-se werden an Bob gesandt.

    Aufgrund der Messergebnisse weiß Bob, was zu tun ist, um die Teleportation abzuschließen und die ausgewählten Quantenzustände des Lichtpulses, Amplitude und Phase, auf das atomare Ensemble zu übertragen. Dazu legt er ein niederfrequentes Magnetfeld an, das den kollektiven Spin (Eigendrehim-puls) des Systems zum Schwingen bringt. Dieser Vorgang lässt sich vergleichen mit der Präzession eines Kreisels um seine Hauptachse: Die Auslenkung des Kreisels korrespondiert mit der Amplitude des Lichtes, während der Nulldurchgang der Phase entspricht.

    Um nachzuweisen, dass die Teleportation erfolgreich war, wird nach 0,1 Millisekunden ein zweiter starker Puls polarisiertes Licht auf das atomare Ensemble geschickt, der dessen Zustand gewissermaßen "ausliest". Aus diesen Messwerten können die theoretischen Physiker die so genannte "Fidelity" berechnen, eine Gütezahl, die angibt, wie gut der Zustand des teleportierten Objektes mit dem Original übereinstimmt. (Eine Gütezahl von 1 entspricht einer perfekten Übertragung, während der Wert Null bedeutet, dass gar keine Übertragung statt gefunden hat.). Im vorliegenden Experiment beträgt die Gütezahl 0,6 und liegt damit deutlich über dem Wert von 0,5, der bestenfalls auf klassischem Weg, z.B. durch Übermittlung der Messwerte per Telefon, ohne Beteiligung von verschränkten Teilchen, zu erreichen wäre.

    Anders, als es der geläufigen Vorstellung von "Beamen" entspricht, ist hier nicht ein Teilchen von einem Platz verschwunden und an einem anderen Platz wieder aufgetaucht. "Es geht bei der Quantenteleportation um Kommunikationsmethoden mit Anwendung in der Quantenkryptographie, der Ver-schlüsslung von Daten, und nicht um neuartige Verkehrswege", betont Dr. Klemens Hammerer. "Die Bedeutung des Experimentes liegt darin, dass erstmals eine Teleportation zwischen Atomen, die stati-onäre Quantenspeicher darstellen, und Licht, das man für die Übertragung von Informationen über weite Strecken braucht, gelungen ist. Damit ist ein wichtiger Schritt getan, Quantenkryptographie, d.h. absolut sichere Kommunikation über lange Distanzen, etwa zwischen München und Kopenhagen, zu ermöglichen." [O.M.]

    Kontakt:
    Prof. Dr. Ignacio Cirac
    Lehrstuhl für Physik, TU München
    Geschäftsführender Direktor am Max-Planck-Institut für Quantenoptik,
    Hans-Kopfermann-Straße 1
    85748 Garching
    Telefon: +49 - 89 / 32905 705 / 736
    Fax: +49 - 89 / 32905 336
    E-Mail: ignacio.cirac@mpq.mpg.de
    www.mpq.mpg.de/cirac

    Dr. Olivia Meyer-Streng
    Presse & Kommunikation
    Max-Planck-Institut für Quantenoptik,
    Hans-Kopfermann-Straße 1
    85748 Garching
    Telefon: +49 - 89 / 32905 213
    Fax: +49 - 89 / 32905 200
    E-Mail: olivia.meyer-streng@mpq.mpg.de


    Bilder

    Merkmale dieser Pressemitteilung:
    Informationstechnik, Mathematik, Medien- und Kommunikationswissenschaften, Physik / Astronomie
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).