idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
22.11.2006 19:00

Einem Peptid bei der Arbeit zugesehen

Beat Müller Kommunikation
Universität Zürich

    Forscher der Universität Zürich und der Universität Bochum konnten erstmals die äusserst schnelle Veränderung eines Peptids sichtbar machen. Mit einer neuen Methode, der so genannten zweidimensionalen Infrarotspektroskopie, ist es ihnen gelungen, die Bewegungen von wenigen Pikosekunden zu beobachten. Die Forschungsarbeit von Prof. Peter Hamm und seinem Team erscheint am Donnerstag, 23. November 2006, in der neusten Ausgabe der Wissenschaftszeitschrift "Nature" (Vol. 444, issue 7118).

    Proteine sind die Bausteine des Lebens. Meist weisen sie eine wohldefinierte dreidimensionale Struktur auf, die jedoch alles andere als statisch ist. Proteine ändern fortwährend ihre Struktur, binden an andere Stoffe und transportieren diese zu ihrem Bestimmungsort, oder sie steigern die Effizienz ganz bestimmter chemischer Reaktionen. Proteine sind hochdynamische Objekte, die ihre Arbeit als "molekulare Maschine" verrichten.

    Gäbe es ein Mikroskop, mit dem man ein Protein sichtbar machen könnte, so würde man feststellen, dass einzelne Atome oder Molekülgruppen innerhalb des Proteins - die "Zahnräder" der molekularen Maschine - sich auf einer unvorstellbar kurzen Zeitskala von wenigen Pikosekunden (0.000 000 000 001 s) bewegen. Licht, das die Strecke von der Erde zum Mond innerhalb einer Sekunde zurücklegen kann, schafft es in dieser kurzen Zeit von einer Pikosekunde gerade einmal 0,3 Millimeter weit; das entspricht in etwa der Dicke von drei Blatt Papier. Man glaubt sehr viel über diese schnelle Dynamik aus theoretischen Berechnungen zu wissen; deren experimentelle Beobachtung und Verifizierung erweist sich jedoch als extrem schwierig.

    Prof. Peter Hamm vom Physikalisch-Chemischen Institut der Universität Zürich ist es in einer Kollaboration mit der Universität Bochum erstmals gelungen, die superschnelle Veränderung eines kleinen Peptids - einem Teil eines Proteins - sichtbar zu machen; sie "filmten" buchstäblich das Peptid, während es sich von einer Struktur in eine andere umwandelte. Verwendung fand hierbei nicht das oben erwähnte Mikroskop, sondern eine neuartige spektroskopischen Methode, die so genannte zweidimensionale Infrarotspektroskopie. Diese ermöglicht es zu bestimmen, ob zwei molekulare Gruppen im Peptid zu einem bestimmten Zeitpunkt räumlich benachbart sind oder nicht. Diese Technik eröffnet ein neues, bisher unzugängliches Zeitfenster für die Beobachtung der Strukturdynamik von Biomolekülen und erlaubt deshalb eine sehr direkte experimentelle Verifizierung theoretischer Modelle.

    Weitere Informationen:
    Prof. Dr. Peter Hamm, Physikalisch-Chemisches Institut, Universität Zürich
    Tel.: +41 44 635 4431
    phamm@pci.unizh.ch

    Prof. Dr. Wolfram Sander, Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum
    Tel.: +49 234 322 4593
    wolfram.sander@rub.de


    Bilder

    Merkmale dieser Pressemitteilung:
    Biologie, Chemie
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).