idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
13.12.2006 14:57

Neuer SFB an der Uni Stuttgart: Wissenschaftler lassen Milliarden Moleküle tanzen

Ursula Zitzler Stabsstelle Hochschulkommunikation
Universität Stuttgart

    Ein neuer Sonderforschungsbereich (SFB) an der Universität Stuttgart wird es erlauben, in den Ingenieur- und Naturwissenschaften in Gebiete vorzustoßen, in denen klassische Ansätze bisher versagen. So wollen die Wissenschaftler beispielsweise Prozesse beim Laserbohren oder beim Transport von Proteinen simulieren. Der jetzt von der Deutschen Forschungsgemeinschaft (DFG) genehmigte SFB 716 mit dem Titel "Dynamische Simulation von Systemen mit großen Teilchenzahlen" wird sich mit dynamischen Simulationen von Systemen mit einigen 10.000 bis zu vielen Milliarden Teilchen befassen. Die Bewilligung gilt für die erste, vierjährige Förderperiode, die im Januar 2007 startet. Insgesamt soll der SFB über zwölf Jahre laufen und mit einer Summe von etwa 15 Millionen Euro gefördert werden. Damit sind an der Universität Stuttgart acht Sonderforschungsbereiche, ein transregionaler SFB und vier Transferbereiche angesiedelt.

    "Mit dem neuen Sonderforschungsbereich bestätigt die DFG die herausragende Kompetenz der Universität Stuttgart auf den Gebieten des Höchstleistungsrechnens und der Visualisierung", freut sich der Rektor der Universität Stuttgart, Prof. Wolfram Ressel. "Zudem ist der SFB eine wirklich interdisziplinäre Initiative, die über die traditionellen Fakultätsgrenzen hinweg exzellente Wissenschaftler zusammenbringt." Im SFB 716 werden Forscher aus dem Maschinenbau, der Physik, der Chemie und der Informatik eng zusammenarbeiten. In all diesen Bereichen werden schon seit langem Methoden der dynamischen Simulation eingesetzt. "Die enge Verbindung zwischen Anwendern aus den Ingenieur- und Naturwissenschaften und Informatikern im neuen SFB ist für das, was wir vorhaben, entscheidend", sagt Prof. Hans Hasse, Direktor des Instituts für Technische Thermodynamik und Thermische Verfahrenstechnik der Universität Stuttgart und Sprecher des Sonderforschungsbereichs. "Jetzt marschieren wir gemeinsam in einem leistungsfähigen Verbund, wie es ihn sonst nirgends auf der Welt gibt."

    Potential für die Industrie

    Anwendungen für dynamische Simulationen mit großen Teilchenzahlen finden sich beispielsweise in der Mechanik und Thermodynamik, in den Materialwissenschaften sowie in der Bio- und Nanotechnologie. Doch schon bei einigen tausend Teilchen erfordern solche Simulationen Methoden des Höchstleistungsrechnens, bei Teilchenzahlen von einigen Millionen ist die Grenze des derzeit Machbaren erreicht. Deshalb will der neue SFB die Methoden der dynamischen Simulation von Systemen mit großen Teilchenzahlen so weiterentwickeln, dass ihr Potential in Zukunft auch in der industriellen Forschung und Entwicklung genutzt werden kann.

    Im Mittelpunkt des Forschungsprogramms stehen Pilotprojekte, in denen unmittelbar Erkenntnisse gewonnen werden, die mit anderen Methoden nicht zu erzielen sind. So wollen die Wissenschaftler die Prozesse beim Laserbohren simulieren, wovon man sich neue Einsichten in die Mechanismen des Prozesses und letztlich Möglichkeiten zu seiner Verbesserung erhofft. Ein weiteres Beispiel ist der Transport von Proteinen in Kanälen von Zellmembranen. Diesen Vorgang verstehen Wissenschaftler bis heute nur unzureichend - und das, obwohl er für alles Leben von zentraler Bedeutung ist.

    Weltrekord im Höchstleistungsrechnen angepeilt

    Für die Forschung im Bereich der dynamischen Simulation von Systemen mit großen Teilchenzahlen ist die Universität Stuttgart ein idealer Standort. So hielten die Arbeitsgruppe von Prof. Hans-Rainer Trebin vom Institut für Theoretische und Angewandte Physik bis zum Jahr 2004 den Weltrekord für die Simulation mit der höchsten Teilchenzahl, zuletzt mit fünf Milliarden Teilchen. "Den Weltrekord holen wir uns zurück", so die einhellige Meinung im neuen SFB. Die Chancen dafür stehen gut, denn mit dem Höchstleistungsrechenzentrum Stuttgart (HLRS) verfügt die Uni über einen der schnellsten und leistungsfähigsten Supercomputer Europas.

    Auch die Visualisierung der Simulationsergebnisse spielt für die Arbeiten im SFB 716 eine zentrale Rolle. "Sie wird neue Einsichten in die Dynamik molekularer Welten liefern", so Prof. Thomas Ertl vom Institut für Visualisierung. "Allerdings stellt sie bei den im SFB 716 betrachteten extrem großen Teilchenzahlen auch höchste Anforderungen an die Visualisierungsalgorithmen und die Graphikhardware". Auch hier ist die Universität Stuttgart gut aufgestellt. So wurde dort erst vor wenigen Monaten das neue Visualisierungsinstitut VISUS gegründet, das mit zwei Teilprojekten in den neuen SFB integriert ist.
    Weitere Informationen bei Prof. Hans Hasse, Direktor des Instituts für Technische Thermodynamik und Thermische Verfahrenstechnik der Universität Stuttgart, Tel. 0711/685-66105, e-mail hasse@itt.uni-stuttgart.de.


    Bilder

    Merkmale dieser Pressemitteilung:
    Biologie, Chemie, Informationstechnik, Maschinenbau, Mathematik, Physik / Astronomie
    überregional
    Forschungs- / Wissenstransfer, Forschungsprojekte
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).