idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Medienpartner:
Wissenschaftsjahr


Teilen: 
27.05.2007 19:00

Wie erhält das Gehirn seine Struktur?

Katrin Weigmann Press office
Bernstein Centers for Computational Neuroscience

    Jede kognitive Leistung eines Menschen - jede Erinnerung und jeder Gedanke - hängt von der genauen Verknüpfungsstruktur der Neurone in seinem Gehirn ab. Nicht nur während der Embryonalentwicklung, sondern während des ganzen Lebens, werden Verknüpfungen im Gehirn neu gebildet und andere aufgelöst. Als Teil einer internationalen Kollaboration haben Wissenschaftler des Bernstein Zentrums für Computational Neuroscience in Berlin, mit finanzieller Unterstützung der Berlin School of Mind and Brain, einige wichtige Prinzipien dieser neuronalen Verdrahtung entschlüsselt. Die Studie, die von Joshua Young und Klaus Obermayer von der Technischen Universität Berlin durchgeführt wurde, führt zu einem besseren Verständnis fundamentaler Prozesse der Gehirnentwicklung, wie auch der Reorganisation des Gehirns nach Verletzungen wie zum Beispiel nach einem Schlaganfall oder nach einer Netzhautdegeneration. Die Arbeit wird am 27. Mai in der Online-Ausgabe der wissenschaftlichen Zeitschrift Nature Neuroscience erscheinen. Weiterhin sind Wissenschaftler der Universität Sydney (Bogdan Dreher, Chun Wang), der Universität Newcastle, Australien (Michael Calford), und des Nencki Institute, Polen (Wioletta Waleszczyk) an der Forschung beteiligt.

    Das Gehirn ist ein komplexes Netzwerk aus Neuronen, die über elektrische Signale kommunizieren. Jedes Neuron erhält Signale von vielen anderen vorgeschalteten Neuronen, die es integriert und verrechnet, um dann selbst ein Signal auszusenden. Bisherige Studien zeigen, dass die Weitergabe von Signalen regelrecht geübt werden kann. Wenn eine Zelle A einen Impuls aussendet, der in Zelle B eine Antwort auslöst, wird der Kontakt von der Zelle A zur Zelle B verstärkt. Die Verstärkung des Kontaktes zwischen den beiden Zellen führt wiederum dazu, dass Zelle B nun mit einer höheren Wahrscheinlichkeit auf ein Signal der Zelle A antwortet. Durch diesen Prozess "lernt" Zelle B das Aktivitätsmuster von Zelle A und übernimmt dieses. Wegen dieser einseitigen Übertragung von Aktivitätsmustern nennen die Wissenschaftler dieses Phänomen "didaktische Reorganisation".

    Nach Verletzungen des Gehirns findet in der betreffenden Region eine massive Reorganisation statt. Die Wissenschaftler um Obermayer haben nun genauer untersucht, nach welchen Prinzipien sich Neurone im visuellen Kortex nach einer Verletzung in der Retina reorganisieren. Aus der Reaktion der Neurone auf visuelle Reize nach einer Regenerationsphase konnten die Wissenschaftler Rückschlüsse auf deren Verknüpfungsstruktur ziehen. Sie fanden, dass Neurone ganzer Hirnbereiche ihre Kontakte in einer sehr gleichförmigen Weise umorganisiert hatten. Aus Vergleichen dieser experimentellen Daten mit denen aus Computermodellen konnten die Forscher eindeutig ableiten, dass diese gleichförmige Art und Weise der Neuverschaltung eine Folge "didaktischer Reorganisation" ist.

    Der Kortex ist die erste Verschaltungsebene im Gehirn, in der visuelle Signale, die auf die Retina fallen, auf Bildeigenschaften wie den Verlauf von Konturen hin analysiert werden. Bei einer Verletzung der Retina verlieren Neurone in einer kleinen, klar umrissenen Region des visuellen Kortex die entsprechenden Eingangssignale aus der Retina. Durch diesen Verlust von Input antworten die Neurone umso stärker auf Signale von anderen ihnen vorgeschalteten Zellen, in der Regel benachbarte Kortex-Zellen, die noch direkte Signale aus der Retina erhalten. Wegen dieser verstärkten Empfindlichkeit der betreffenden Zellen lässt sich das Prinzip der didaktischen Reorganisation am Beispiel der neuronalen Regeneration nach einer Retinaverletzung besonders eindrücklich demonstrieren.

    Die Wissenschaftler gehen davon aus, dass sowohl die Entstehung neuronaler Schaltkreise währende der Entwicklung des Gehirns als auch die verschiedenen Schritte der Regeneration den gleichen grundlegenden Prinzipien folgen. Die Ergebnisse der Wissenschaftler sind ein wesentlicher Schritt im Verständnis dieser Prozesse und bilden damit die Voraussetzung für die Entwicklung besserer Behandlungsmöglichkeiten von Hirnverletzungen.

    Originalveröffentlichung:
    J. M. Young, W. J. Waleszczyk, C. Wang, M. B. Calford, B. Dreher & K. Obermayer: Cortical reorganization consistent with spike timing- but not correlation-dependent plasticity. Nature Neuroscience (online), 27. Mai 2007, 1900 Uhr CEST

    Kontakt:
    Joshua Young, Prof. Dr. Klaus Obermayer
    Technische Universität Berlin
    Fakultät IV - Elektrotechnik und Informatik
    Franklinstr. 28/29
    10587 Berlin
    Tel: 030-314-73442
    EMail: sekr@ni.cs.tu-berlin.de


    Weitere Informationen:

    http://ni.cs.tu-berlin.de/
    http://www.bccn-berlin.de/


    Merkmale dieser Pressemitteilung:
    Biologie, Ernährung / Gesundheit / Pflege, Informationstechnik, Mathematik, Medizin, Physik / Astronomie
    überregional
    Forschungsergebnisse
    Deutsch


    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).