idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
24.07.2007 11:48

Bremer Fallturm: Katapult-Experimente liefern bemerkenswerte Forschungsergebnisse

Eberhard Scholz Pressestelle
Universität Bremen

    Mit erfolgreichen Fallturmexperimenten unter Anwendung des neuen Katapultsystems haben Wissenschaftler der Universität Bremen jetzt neue Forschungsergebnisse erhalten. Während der ca. neun Sekunden Schwerelosigkeit führten die Forscher des Zentrums für angewandte Raumfahrttechnologie und Mikrogravitation (ZARM) Experimente durch, die neue Erkenntnisse über das Strömungsverhalten von Flüssigkeiten mit freien Oberflächen in der Schwerelosigkeit liefern.

    Die insgesamt zwölf Experimente dienen dazu, die Handhabung von Flüssigkeiten in der schwierigen Umgebung der Schwerelosigkeit an Bord von Weltraumfahrzeugen zu verbessern. Eine technisch elegante und auch kostengünstige Lösung hierfür sind die so genannten Kapillarkanäle. Dabei handelt es sich um seitlich offene Leitungen, in denen Flüssigkeit strömt. Bei dem untersuchten Kapillarkanal handelt es sich um einen rechteckigen Kanal, der an drei Seiten geschlossen und an einer Seite offen ist, einer so genannten Nut. Die strömende Flüssigkeit wird durch ihre Oberflächenspannung und die guten Benetzungseigenschaften der Flüssigkeit zum Wandmaterial in der Nut gehalten. Welche Kräfte dabei wirksam sind und wie sie interagieren, kann seit einigen Jahren mit den Gleichungen der Strömungsmechanik mathematisch modelliert werden. Diese Modellierung muss allerdings durch Experimente immer wieder überprüft werden.

    Diesem Ziel diente auch das Katapult-Experiment, das an einer Nut mit einer Breite von fünf Millimeter, einer Tiefe von 30 Millimeter und einer Länge von elf Millimeter durchgeführt wurde. Eine Hochgeschwindigkeits-Kamera filmte das Experiment während des Katapultschusses. Diese Daten können dann mit Hilfe einer optischen Bildauswertung analysiert und mit dem mathematischen Modell verglichen werden. Als Flüssigkeit wurde ein sehr dünnflüssiges Fluid verwendet, dessen Stoffeigenschaften wie Zähigkeit, Dichte und Oberflächenspannung in Kombination mit der Geometrie des Testkanals realen Treibstoffen sehr ähnlich sind. Die Ergebnisse können somit vom Modell auf ein Raumfahrzeug übertragen werden.

    Mit ihrem Experiment konnten die Bremer Forscher jetzt sehr präzise ermitteln, bei welcher Geschwindigkeit die Strömung abreißt und warum das geschieht. Im Kapillarkanal breiten sich nämlich in Längsrichtung Kapillarwellen aus. Sobald die Strömung genauso schnell wird wie diese Wellen, reißt sie ab - ein Phänomen, das "Choking-Effekt" genannt wird. Die neuen Ergebnisse tragen grundlegend dazu bei, bisher kaum verstandene Vorgänge in Kapillarkanälen zu erklären. Weiterhin dienen die Experimente der Vorbereitung eines Raumstationsexperimentes (CCF), welches im Jahr 2009 in Kooperation mit der NASA in der Microgravity Science Glovebox betrieben werden soll. Die Forschungsarbeit des ZARM wird mit Mitteln des Bundesministeriums für Bildung und Forschung durch das Deutsche Zentrum für Luft- und Raumfahrt (DLR) gefördert.

    Achtung Redaktionen: In der Uni-Pressestelle können Bilder mit Seitenansichten des Kapillarkanals angefordert werden.

    Weitere Informationen:

    Universität Bremen
    Zentrum für Angewandte Raumfahrttechnologie und Mikrogravitation (ZARM)
    PD Dr.-Ing. Michael Dreyer
    Dipl.-Ing. Dennis Haake
    E-Mail: dreyer@zarm.uni-bremen.de


    Bilder

    Ansicht des Kapillarkanals von der Seite. Die Flüssigkeit strömt von rechts nach links: Unterkritische Strömungsgeschwindigkeit mit stabiler Oberfläche
    Ansicht des Kapillarkanals von der Seite. Die Flüssigkeit strömt von rechts nach links: Unterkritisc ...

    None

    Überkritische Strömungsgeschwindigkeit und dem damit verbundenen Kollaps der freien Oberfläche mit Gaseinbruch am Kanalauslass
    Überkritische Strömungsgeschwindigkeit und dem damit verbundenen Kollaps der freien Oberfläche mit G ...

    None


    Merkmale dieser Pressemitteilung:
    Biologie, Chemie, Maschinenbau, Mathematik, Physik / Astronomie, Werkstoffwissenschaften
    überregional
    Forschungs- / Wissenstransfer, Forschungsergebnisse
    Deutsch


     

    Ansicht des Kapillarkanals von der Seite. Die Flüssigkeit strömt von rechts nach links: Unterkritische Strömungsgeschwindigkeit mit stabiler Oberfläche


    Zum Download

    x

    Überkritische Strömungsgeschwindigkeit und dem damit verbundenen Kollaps der freien Oberfläche mit Gaseinbruch am Kanalauslass


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).