idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
25.02.2008 13:25

Pfannkuchenform verhindert den Kollaps

Ursula Zitzler Referat für Presse- und Öffentlichkeitsarbeit
Universität Stuttgart

    Stuttgarter Physiker vermessen Grenze zwischen stabilen und instabilen Zuständen von Quantengasen aus Magneten

    Instabilitäten von sich anziehender Materie sind in der Astrophysik seit langem bekannt und führen zu so spektakulären Ereignissen wie einer Supernova. Auch ein Gas aus lauter kleinen atomaren Magneten ist nicht stabil. Es implodiert durch die anziehende Wechselwirkung zwischen den Magneten. Die Forschergruppe von Prof. Tilman Pfau am 5. Physikalischen Institut der Universität Stuttgart hat nun das komplette Stabilitätsdiagram, das heißt die Grenze zwischen stabilen und instabilen Zuständen eines Quantengases aus Magneten vermessen und die Ergebnisse in der jüngsten Ausgabe von Nature Physics publiziert.*)

    Dass sich anziehende Materie nicht stabil ist, hat jeder schon einmal erfahren, der mit einer Ansammlung von Magneten gespielt hat: sie klumpen einfach zusammen. Das gilt auch, wenn die Magneten durch ein äußeres Magnetfeld polarisiert werden. Stabil werden sie erst, wenn sie gleichzeitig in einer flachen Scheibe - Wissenschaftler sprechen von einer Pfannkuchenform - gefangen gehalten werden. Eine Kugel- oder Zigarrenform ist dagegen instabil. Dann hilft nur noch eine zusätzliche abstoßende Wechselwirkung, um das kollapsartige Zusammenklumpen zu verhindern.

    Die von der Arbeitsgruppe von Prof. Tilman Pfau im Rahmen eines Projekts des transregionalen Sonderforschungsbereichs SFB/TRR21 "Control of quantum correlations in tailored matter" (Co.Co.Mat) untersuchten Quantengase aus Magneten bestehen aus ultrakalten Chromatomen, die nach einem Phasenübergang als Bose-Einstein Kondensat vorliegen. In dieser besonderen Form von Quantenmaterie können sowohl die Wechselwirkungen zwischen den Magneten als auch die einfangende Form kontrolliert eingestellt werden. Theoretische Vorhersagen zu den Grenzen zwischen stabilen und instabilen Bereichen hatte Tilman Pfau zusammen mit einer polnischen Arbeitsgruppe schon vor fast zehn Jahren publiziert. Nun ist endlich der experimentelle Nachweis gelungen, dass sich das Quantengas tatsächlich wie vorhergesagt verhält und eine Pfannkuchenform das Gas stabilisiert.

    Momentan studiert die Gruppe, wie der Kollaps vonstatten geht. Da die Implosion Ähnlichkeit mit einer Supernova hat, wird sie auch als "Bose Nova" bezeichnet. Dabei werden durch die magnetische Wechselwirkung in bestimmten Parameterbereichen neue Zustände der Quantenmaterie erwartet. Ein gesteuerter Kollaps könnte aber auch genutzt werden, um Chromatome haargenau auf einer Oberfläche abzusetzen.

    *) Tobias Koch, Thierry Lahaye, Jonas Metz, Bernd Fröhlich, Axel Griesmaier, Tilman Pfau: "Stabilizing a purely dipolar quantum gas against collapse", arXiv:cond-mat 0710.3643, to be published in Nature Physics (2008), DOI number 10.1038/nphys887.

    Weitere Informationen bei Prof. Tilman Pfau, 5. Physikalisches Institut, Tel. 0711/685-68025, e-mail: t.pfau@physik.uni-stuttgart.de.


    Bilder

    Chromatome werden durch blaue Laserstrahlen auf ein Millionstel Grad über dem absoluten Nullpunkt gekühlt. Dann entsteht ein ultrakaltes Quantengas aus atomaren Magneten. Die Montage zeigt im Hintergrund einen Ausschnitt aus dem Lasersystem, welches das Laserlicht zur Kühlung erzeugt. Im Vordergrund ist eine typische Falschfarbenfotografie einer ultrakalten Wolke gefangener Chrom Atome zu sehen
    Chromatome werden durch blaue Laserstrahlen auf ein Millionstel Grad über dem absoluten Nullpunkt ge ...
    Quelle: (Foto: Universität Stuttgart)


    Merkmale dieser Pressemitteilung:
    Mathematik, Physik / Astronomie
    regional
    Forschungsprojekte, Wissenschaftliche Publikationen
    Deutsch


     

    Chromatome werden durch blaue Laserstrahlen auf ein Millionstel Grad über dem absoluten Nullpunkt gekühlt. Dann entsteht ein ultrakaltes Quantengas aus atomaren Magneten. Die Montage zeigt im Hintergrund einen Ausschnitt aus dem Lasersystem, welches das Laserlicht zur Kühlung erzeugt. Im Vordergrund ist eine typische Falschfarbenfotografie einer ultrakalten Wolke gefangener Chrom Atome zu sehen


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).