Forscher von Siemens Corporate Technology (CT) und der TU München haben die weltweit erste experimentelle Umsetzung eines künstlichen Neuronalen Netzes auf einem einfachen Quantencomputer realisiert. Dies ist ein Schritt in Richtung eines praxistauglichen Quantencomputers. Die Simulation der CT-Forscher zur Erkennung von Mustern überprüften Wissenschaftler der TU in einem Magnetresonanzspektrometer (NMR). Das System mit zwei so genannten Qubits bestätigte alle Ergebnisse.
Konventionelle Computer stoßen hinsichtlich der Miniaturisierung bei gleichzeitiger Steigerung der Leistungsfähigkeit in einigen Jahren an ihre physikalischen Grenzen. Experten erwarten daher, dass Computer künftig nicht mit Bits, sondern auch mit Qubits rechnen. Während ein Bit nur entweder 0 oder 1 darstellen kann, können Qubits aufgrund der seltsamen Eigenschaften der Quantenwelt zur selben Zeit verschiedene Zustände einnehmen und zudem mit anderen Qubits verschränkt sein. Neben einem Geschwindigkeitsvorteil erhofft man sich dadurch auch eine Reduktion des Energieaufwandes, der für heutige Großrechenanlagen bereits erheblich ist.
Die Experten von CT verwendeten für ihren Quantencomputer Ergebnisse aus der Forschung mit speziellen Neuronalen Netzen, die für die Erkennung von Mustern geeignet sind. Als Muster verwenden sie Punkte, die jeweils zwei Farben annehmen können. Diese stellen sie über Qubits dar. Mit ihrem selbst entwickelten Algorithmus können die Forscher vorhersagen, wie sich ein realer Quantenprozessor verhalten würde, wenn man ein neues Farbmuster anlegt. Die Simulation vergleicht dieses Muster mit abgespeicherten Mustern und gibt den Ähnlichkeitsgrad an.
Die realen Versuche nahmen Forscher der TU München in einem NMR-Spektrometer vor. In einer Lösung bei Raumtemperatur befand sich Natriumformiat, das ein Kohlenstoff- und ein Wasserstoffatom enthält. Beide Teilchen bilden in starken Magnetfeldern jeweils ein Qubit. Die gemessenen Signale des realen Quantencomputers entsprachen dabei exakt den vorherberechneten Signalen. Damit haben die Forscher gezeigt, dass ihr Algorithmus für einen Quantencomputer in der Praxis korrekte Ergebnisse liefert.
Eine schnellere Mustererkennung - das Fernziel der Entwicklung - könnte bei Siemens breit Anwendung finden, ob in der Medizin-, der Automatisierungs- oder Energietechnik. Für komplexe Probleme wie beispielsweise die Identifikation von Gen-sequenzen wäre ein Quantencomputer besonders geeignet. Die Vision ist ein Hybrid-Prozessor, der mit konventioneller Technik und quantenmechanischen Methoden arbeitet. Die meisten Operationen würden mit konventionellen Chips bewältigt, bestimmte Aufgaben aber an einen Quantenprozessor ausgelagert.
http://www.siemens.de/researchnews
http://www.siemens.com/ct-bilder/in20080203 - Bilder
Merkmale dieser Pressemitteilung:
Biologie, Chemie, Elektrotechnik, Energie, Ernährung / Gesundheit / Pflege, Informationstechnik, Mathematik, Medizin, Physik / Astronomie
überregional
Forschungsergebnisse, Forschungsprojekte
Deutsch

Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.
Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).
Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.
Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).
Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).