Das Gehirn ist normalerweise gut gegen das Immunsystem des eigenen Körpers abgegrenzt. Doch nach einem Schlaganfall können Immunzellen aus dem Blut dorthin gelangen und töten Nervenzellen in dem betroffenen Gebiet. Um dem Einhalt zu gebieten, besitzt das Nervensystem sogenannte Makrophagen, die die Eindringlinge erkennen und unschädlich machen, obwohl es sich um körpereigene Zellen handelt.
Eine wichtige Nachricht auch für die Pharma-Industrie: bei der Entwicklung anti-entzündlicher Medikamente muss dieser neue Mechanismus beachtet werden.
In den westlichen Industrieländern ist der Schlaganfall die dritthäufigste Todesursache und häufigster Grund für schwere Behinderungen. Allein in Deutschland trifft er etwa 250.000 Menschen jährlich. Lässt sich der Verlust von Nervenzellen beim Schlaganfall aufhalten? Der Einsatz schützender Substanzen mit dem Ziel, minderdurchblutete Hirnareale vor dem Zelltod zu bewahren und dem fortschreitenden Zellverlust entgegenzuwirken, erwies sich bisher kaum als erfolgreich. Möglicherweise gibt es aber hirneigene Schutzmechanismen, deren Verständnis neue Wege eröffnet.
Es ist allgemein bekannt, dass das Nervensystem durch ein sogenanntes Immunprivileg geschützt wird, wodurch Entzündungsreaktionen verhindert werden. Dies wird z.B. durch die Blut-Hirn-Schranke gewährleistet. Im Nervensystem übernehmen vor allem Mikroglia-Zellen, die so genannten ?Makrophagen des Gehirns?, die Immunabwehr. Die Bedeutung der Mikroglia bei akuter Schädigung des Gehirns, wie etwa beim Schlaganfall und Trauma, als auch bei chronischen Gehirnschädigungen ist Gegenstand intensiver Forschung. Bislang herrschte jedoch die Meinung vor, dass die durch Schädigung aktivierten Mikrogliazellen im Gehirn das Abtöten und Beseitigen von Nervenzellen verursachen. Deshalb wurde auch schon im Experiment versucht, die Mikroglia pharmakologisch auszuschalten, um damit den Untergang von Nervenzellen nach z. B. experimentellem Schlaganfall zu verringern.
Nunmehr gibt es aber zunehmend Hinweise, dass die Mikroglia neben ihrem zerstörerischen Charakter auch eine schützende Wirkung für das Gehirn haben kann. Kürzlich gelang es einem Team von Forschern aus dem Leibniz-Institut für Neurobiologie unter Leitung von Prof. Klaus Reymann in Zusammenarbeit mit Prof. Matthias Gunzer vom Institut für Immunologie der Magdeburger Universität an einem in vitro Schlaganfallmodell zu zeigen, dass Mikrogliazellen die Fähigkeit besitzen, die unmittelbar nach einem Schlaganfall ins Nervengewebe einwandernden neutrophilen Granulozyten (also Zellen des Immunsystems im Blut) zu eliminieren. Dieser Mechanismus trägt wahrscheinlich dazu bei, nach einem Schlaganfall den Schaden an den Nervenzellen zu begrenzen.
Wie der Medizinstudent Jens Neumann in seinem gerade erschienenen Artikel im renommierten US-amerikanischen Journal of Neuroscience (Published online June 4, 2008) berichtet, sind Mikrogliazellen in der Lage, im neuronalen Gewebe äußerst effizient die neutrophilen Granulozyten zu beseitigen. Dabei handelt es sich um jene Zellpopulation, die als erste in das geschädigte Gehirnareal einwandert. Die neutrophilen Granulozyten gelten in diesem Kontext als tödlich für Nervenzellen. Das Aufeinandertreffen von Mikrogliazellen, die per se im Gehirn vorzufinden sind, und infiltrierenden neutrophilen Granulozyten war bisher nur sehr vage beleuchtet worden. In Experimenten, in denen Hirngewebe im Reagenzglas mit neutrophilen Granulozyten in Kontakt gebracht wurde, konnten Neumann und Kollegen zeigen, dass diese das ganze Hirngewebe sehr schnell durchdringen. Die Mikrogliazellen nehmen nun, sobald ein neutrophiler Granulozyt in Reichweite ist, die Jagd auf. In den meisten Fällen wird der Granulozyt einverleibt und schnell abgebaut. Durch die Anwendung der modernen 2-Photonten-Mikroskopie und Videomikroskopie konnte dieses Phänomen erstmalig visualisiert und zudem Live verfolgt werden.
Zwar ist bekannt, dass Makrophagen auch in anderen Geweben Granulozyten beseitigen können, allerdings sind diese dann bereits ?dem Tod geweiht? und unterlaufen einen programmierten Zelltod. Die Mikrogliazellen im Gehirn hingegen können interessanterweise nicht nur sterbende sondern auch lebende Granulozyten entfernen. Dass Immunzellen andere lebende körpereigene Immunzellen beseitigen können, war bisher völlig unbekannt. Nimmt man den Mikrogliazellen diese Fähigkeit, indem man die molekularen Erkennungsstrukturen auf ihrer Oberfläche hemmt, dann erhöht sich der neuronale Schaden nach einem experimentellen Schlaganfall.
Für die Pharmaforschung bedeutet dieser Befund, zukünftig anti-entzündliche Medikamente unter Berücksichtigung der besonderen Rolle der Mikroglia zu entwickeln. Die Aufklärung der an dieser Zell-Zell-Wechselwirkung beteiligten Signalwege ist Gegenstand eines Forschungsprojektes, welches im Rahmen des ?Centers of Behavioral Brain Sciences? durch das Land Sachsen-Anhalt gefördert wird.
Das Leibniz-Institut für Neurobiologie Magdeburg ist ein Zentrum für Lern- und Gedächtnisforschung. Hier werden molekulare, zelluläre, physiologische und psychologische Korrelate von Hirnplastizität untersucht.
Ansprechpartner für Redaktionen:
Prof. Klaus Reymann
Leibniz-Institut für Neurobiologie Magdeburg
Tel. 0163/6275600
e-mail: reymann@ifn-magdeburg.de
http://www.ifn-magdeburg.de
Merkmale dieser Pressemitteilung:
Biologie, Chemie, Ernährung / Gesundheit / Pflege, Informationstechnik, Medizin
überregional
Forschungsergebnisse, Wissenschaftliche Publikationen
Deutsch
Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.
Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).
Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.
Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).
Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).