idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
06.11.2000 14:49

Kürzeste Lichtimpulse erzeugt Völlig neue Experimente werden nun möglich

Dr. Elisabeth Zuber-Knost Presse und Kommunikation
Universität Karlsruhe (TH) - Forschungsuniversität.gegründet 1825

    Nr. 119 / 7. November 2000 / mea

    Kürzeste Lichtimpulse erzeugt
    Völlig neue Experimente werden nun möglich

    Am Institut für Hochfrequenztechnik und Quantenelektronik (IHQ) ist es Professor Dr. Franz Kärtner und seinen Mitarbeitern Dr. Uwe Morgner und Richard Ell gelungen, die derzeit kürzesten Lichtimpulse direkt aus einem Laser zu erzeugen. Diese Pulse um-fassen weniger als zwei optische Schwingungen und sind nur noch fünf Femtosekun-den lang. Eine Femtosekunde entspricht der unvorstellbar kurzen Zeitdauer von einem Millionstel einer Milliardstel Sekunde.

    Möglich wurde dies durch neue Erkenntnisse über die Impulsformung im Laser und ex-trem breitbandige Laserspiegel, die durch eine langjährige Zusammenarbeit mit dem Massachusetts Institute of Technology (MIT) entwickelt wurden. Laserimpulse dieser Kürze ermöglichen völlig neue Experimente in den Ingenieur- und Naturwissenschaf-ten, zum Beispiel in der Elektronik, der Optik und der Kurzzeitlaserspektroskopie, sowie mit hochauflösenden nichtinvasiven Abbildungsverfahren wie etwa der optischen Kohä-renztomographie.

    Zur zeitlichen Vermessung ultraschneller Vorgänge benötigt man Abtastsignale, deren zeitliche Dauer kleiner als oder zumindest gleich groß wie die zu messenden Zeitkon-stanten sind. Die momentan kürzesten technisch erzeugten und genutzten Ereignisse überhaupt sind Impulse aus Lasern, die mit hohen Wiederholraten im 100-MHz-Bereich und Dauern im Piko- und Femtosekundenbereich emittiert werden. In den vergangenen drei Jahrzehnten haben sich die Techniken kontinuierlich zu kürzeren Impulsbreiten hin weiterentwickelt und auf diesem Weg immer neue und tiefere Einblicke in ultraschnelle Vorgänge in Physik, Chemie, Biologie und Medizin eröffnet. Dabei spielt nicht nur die zeitliche Kürze, sondern auch die damit verbundene hohe optische Bandbreite für viele hochauflösende Untersuchungsmethoden eine entscheidende Rolle.

    Ein Ende der ständig nach unten korrigierten Pulsrekorde ist noch lange nicht abseh-bar; trotzdem markiert der Laser am IHQ einen bemerkenswerten Schritt, kommt man doch in einen Bereich, in dem nicht allein der Impuls als mikrometer-dünnes Scheib-chen lokalisierter Photonenenergie eine Rolle spielt (eine Femtosekunde entspricht 0,3 Mikrometern). Es tritt bei diesen Pulsbreiten auch das korrespondierende elektro-magnetische Feld im Wellenbild zutage, da eben bei optischen Impulsen im Bereich von fünf Femtosekunden die Feldamplitude während der Dauer des Impulses nur noch we-niger als zweimal durchschwingen kann.

    Zur Bestimmung der tatsächlichen Impulsbreite wurde eine sogenannte interferometri-sche Autokorrelation (IAC) aufgenommen. Die IAC ist ein relativ einfaches Mittel, um die Pulsbreiten ultrakurzer Pulse abzuschätzen: Man überlagert den Impuls mit einer zeitversetzten identischen Kopie in einem Frequenzverdopplerkristall, der das Licht um 800 Nanometer in den blauen Bereich um 400 Nanometer transformiert. Die IAC erhält man, indem man das blaue Interferenzsignal gegen die Zeitverschiebung der zwei Pulskopien aufträgt. Daraus kann die volle Impuls-Halbwertsbreite von fünf Femtose-kunden abgeleitet werden. Diese Pulse sind weltweit die kürzesten, die jemals direkt von einem Laseros-zillator erzeugt wurden.

    Mit einem Laser dieser Art konnte von den Kooperationspartnern am MIT in Cam-bridge/USA eine bis dahin unerreichte Verbesserung im Bereich der ophtalmologischen Optischen Kohärenz-Tomographie (OCT) erreicht werden. OCT ist ein Bildgebungs-verfahren, dessen Auflösung von der Kohärenzlänge der verwendeten Lichtquelle ab-hängt. Da kurze Impulse per se einer kurzen Kohärenzlänge entsprechen, ist dieser Titan-Saphir-Laser die Lichtquelle, die weltweit die höchste Auflösung in OCT ver-spricht.

    In der Augenheilkunde sind optische Diagnoseverfahren seit langem etabliert. OCT wird vielerorts bereits im klinischen Alltag eingesetzt, und Geräte mit 10 bis 15 Mikro-meter Tiefenauflösung sind kommerziell erhältlich. Durch den Einsatz der ultra-hoch-auflösenden Technik mit dem Titan-Saphir Laser als Lichtquelle konnte im Labor die Tiefenauflösung auf unter drei Mikrometer reduziert werden. Dadurch konnten Bilder vom menschlichen Auge aufgenommen werden, die unter anderem zur frühzeitigen Diagnose des grünen Stars (Glaukom) verwendet werden können. Die Auflösung, die hier an Versuchspersonen erzielt wurde, kommt der Auflösung herkömmlicher mikro-skopischer Histopathologie nach Gewebeentnahme sehr nahe.

    Selbstverständlich ist dieses System momentan für den klinischen Alltag wegen seiner Komplexität noch ungeeignet. Es muss noch viel Arbeit in die Entwicklung kompakter breitbandiger Lichtquellen investiert werden, bis die hier vorgestellte Bildqualität tat-sächlich breit verfügbar wird. Trotzdem sind diese Arbeiten wegweisend für das, was in ein paar Jahren Standard-Diagnostik sein könnte.

    Die Jagd nach neuen Weltrekorden und kürzeren Laserimpulsen hat ihren Preis, La-serforschung ist vergleichsweise teuer, und Geldgeber sind von sinkenden Impulsbrei-ten allein wenig beeindruckt. Das immense Anwendungspotenzial, von dem in diesem Artikel nur eine winzige Facette beleuchtet werden konnte, hat das Institut jedoch darin bestärkt, diesen Forschungszweig konsequent und zielstrebig weiter zu verfolgen.

    Nähere Informationen:
    Professor Dr. Franz Xaver Kärtner-
    Dr. Uwe Morgner
    Tel.: (0721) 608 2486
    E-Mail: morgner@ihq.uni-karlsruhe.de

    Nur noch fünf Femtosekunden lang sind die Lichtimpulse, die am Institut für Hochfrequenztech-nik und Quantenelektronik der Universität Karlsruhe erzeugt werden konnten - das entspricht der unvorstellbar kurzen Zeit von fünf Millionstel einer Milliardstel Sekunde. Laserimpulse dieser Kürze ermöglichen völlig neue Experimente in den Ingenieur- und Naturwissenschaften, zum Beispiel in der Elektronik, der Optik und der Kurzzeitlaserspektroskopie, sowie bisher uner-reichte Auflösungen in nichtinvasiven Abbildungsverfahren in Biologie und Medizin wie etwa der optischen Kohärenztomographie. Das Bild senden wir Ihnen auf Anfrage gerne zu.
    Foto: Thilo Mechau

    Diese Presseinformation ist im Internet abrufbar unter:
    http://www.uni-karlsruhe.de/~presse/Pressestelle/pi119.html


    Weitere Informationen:

    http://www.uni-karlsruhe.de/~presse/Pressestelle/pi119.html


    Bilder

    Merkmale dieser Pressemitteilung:
    Elektrotechnik, Energie
    überregional
    Forschungsergebnisse
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).