idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Medienpartner:
Wissenschaftsjahr


Teilen: 
11.11.2008 15:42

Spintronik: Physikerteam gelingt Nachweis eines nano-mechanischen Torsionseffektes durch Drehimpulsänderung von Elektronen

Dr. Kristin Beck Corporate Communications & Media Relations
Jacobs University Bremen

    Wissenschaftlern um den Quantenmechaniker Pritiraj Mohanty (Boston University) gelang jetzt erstmals die nanomechanische Messung einer Torsion eines Nanodrahtes, die durch die Umkehrung des Drehimpulses von Spin-polarisierten Elektronen verursacht wurde. Die Messung bestätigt eine vor über zehn Jahren von den theoretischen Physikern Stefan Kettemann, Jacobs University, und Peter Fulde, MPI für Komplexe Systeme, in den Annalen der Physik publizierten Vorhersage. Der Effekt, von dem sich Experten unter anderem neue Perspektiven in der Spintronik versprechen, wurde jetzt in einem gemeinsamen Artikel in der aktuellen Ausgabe von Nature Nanotechnology veröffentlicht (doi:10.1038/nnano.2008.311).

    Die Spintronik, ein neues noch in der Entwicklung befindliches Forschungsgebiet in der Nanoelektronik, nutzt das magnetische Moment von Elektronen zur Informationsdarstellung und -verarbeitung und nicht nur deren Ladung wie die herkömmliche Halbleiterelektonik. Das magnetische Moment steht in enger Beziehung mit einer Art Eigenrotation der Elektronen, dem quantenmechanischen Spin. Dieser Spin kann nur zwei diskrete Zustände annehmen: er kann "auf" oder "ab" zeigen. In einem magnetischen Metall zeigen alle Spins in die gleiche Richtung, sie sind polarisiert. Fließt Strom (in Form von Elektronen) von einem unpolarisierten Metall in einen spinpolarisierten Magneten, müssen die Elektronen, deren Spin in die falsche Richtung zeigt, ihren Spin umkehren, was als "Spin-Flip" bezeichnet wird. Aufgrund des physikalischen Gesetzes der Erhaltung des Drehimpulses überträgt sich diese Umkehrung des elektronischen Drehimpulses als mechanische Torsionsenergie auf das Material. Wenn sehr viele Elektronen gleichzeitig ihren Spin umkehren, wird die winzige Drehimpulsänderung verstärkt und als mechanische Verdrillung von sehr dünnen Drähten im Nanomaßstab messbar.

    In der experimentellen Messapparatur, die in enger Zusammenarbeit mit den beiden Theoretikern entworfen und im Tieftemperatur-Nanotechnologie-Labor der Boston University aufgebaut wurde, wurde ein Elektronenstrom von einem ferromagnetischen Kobaltdraht in einen nichtmagnetischen Golddraht geschickt. Am Kontaktpunkt der beiden Drähte von 50 Nanometer Durchmesser diente eine nanoelektromechanische Struktur, ein Resonator, bei dem zwei Flügel einander entgegen gerichtete Torsionsschwingungen ausführten, der Verstärkung des durch Elektronen-Spin-Flip erzeugten Torsionseffektes auf messbare Werte von 10-22 NewtonMeter.

    "Als wir die Idee einer Spin-Flip-Torsionswaage hatten", erinnert sich Stefan Kettemann, "hielten wir es für einen so winzigen Effekt, der wenig mehr als ein Gedankenexperiment von theoretischen Physikern bleiben würde. Die jetzt geglückte Messung zeigt jedoch, dass man über magnetische Spin-Manipulation von Elektronen sehr winzige mechanische Bewegungen erzeugen kann, die man sich beispielsweise als zukünftige Basis eines winzigen Schalters von wenigen Nanometern Größe für eine sehr schnelle und energieeffiziente Informationstechnologie vorstellen kann", so Kettemann weiter über die Bedeutung des Bostoner Experimentes.

    Fragen zu dieser Arbeit beantwortet:
    Dr. habil. Stefan Kettemann
    Tel.: 0421 200-3150
    E-Mail: s.kettemann@jacobs-university.de


    Merkmale dieser Pressemitteilung:
    Elektrotechnik, Informationstechnik, Physik / Astronomie
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


    Herzstück des Bostoner Experiments mit Potential für miniaturisierte Zukunftstechnologie: Die Spin-Flip-Torsionswaage ist nur 0,012 mm lang, 0,006 mm breit und 0,0005 mm hoch.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).