Die Realisierung eines Quantencomputers stellt ein hoch aktuelles Gebiet der physikalischen Forschung dar. Diese Computer sind deshalb so attraktiv, weil sie eine drastisch höhere Rechenleistung vollbringen als klassische Rechner. Wissenschaftler von der Universität Würzburg haben zusammen mit Kollegen aus Kanada ein wesentliches Bauelement für einen Quantencomputer, ein "quantum gate", realisiert. Dem Wissenschaftsblatt "Science" war das einen Bericht wert.
Bei einem herkömmlichen Computer sind die Informationsträger so genannte Bits, die entweder den Wert 0 oder 1 annehmen können. Im Quantencomputer dagegen können die "quantum bits" - vereinfacht gesagt - jeden Wert zwischen 0 und 1 annehmen, und damit ist der Informationsgehalt pro Bit wesentlich erhöht.
Seine eigentliche Schnelligkeit bezieht ein Quantencomputer aber daraus, dass die einzelnen Bits nicht getrennt angesteuert werden. sondern alle Bits miteinander gekoppelt sind. Die Forscher sprechen hier von einer Verschränkung: Wird ein bestimmter "quantum bit" angesteuert, dann werden aufgrund der Kopplung gleichzeitig auch alle anderen Bits adressiert. Statt einer einzelnen Rechenoperation zu einer bestimmten Zeit sind dadurch gleichzeitig sehr viele Rechenoperationen durchführbar.
Der Arbeitsgruppe am Würzburger Lehrstuhl für Technische Physik unter der Leitung von Prof. Dr. Alfred Forchel gelang es zusammen mit der Forschungsgruppe von Prof. Dr. Pawel Hawrylak vom National Research Council in Ottawa, durch die Kopplung so genannter Quantenpunkte künstliche Moleküle herzustellen. Quantenpunkte können als im Labor synthetisierte Atome betrachtet werden, deren Eigenschaften der Experimentator genau einstellen kann.
Wird nun ein Elektron in ein solches Molekül injiziert, so kann es als "quantum bit" benutzt werden: Es kann sich entweder in dem einen (logische 0) oder in dem anderen Quantenpunkt (logische 1) befinden. Mehr noch, es kann sich sogar in beiden Punkten aufhalten. Werden in das künstliche Molekül zwei Elektronen injiziert, so werden die Zustände dieser beiden Teilchen gekoppelt. Somit ist ein so genanntes "quantum gate" und damit ein Bauelement realisiert, das zur Verschränkung zweier Bits dient.
M. Bayer, P. Hawrylak, K. Hinzer, S. Fafard, M. Korkusinski, Z. R. Wasilewski, O. Stern, A. Forchel: "Coupling and Entangling of Quantum States in Quantum Dot Molecules", Science 291 (2001), Seiten 451-453.
Hinweis für Redaktionen/Journalisten: Ein pdf-File der Originalarbeit können Sie bei der Pressestelle der Universität Würzburg anfordern, T (0931) 31-2401.
Weitere Informationen erhalten Sie bei Dr. Manfred Bayer, T (0931) 888-5792, Fax (0931) 888-5143, E-Mail:
mbayer@physik.uni-wuerzburg.de
Merkmale dieser Pressemitteilung:
Informationstechnik, Mathematik, Physik / Astronomie
überregional
Forschungsergebnisse, Wissenschaftliche Publikationen
Deutsch
Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.
Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).
Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.
Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).
Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).