Materialien, die Strom nahezu ohne Widerstand leiten, so genannte Supraleiter, lassen Ingenieurherzen höher schlagen. Physiker weltweit forschen an einer Erklärung für dieses physikalische Phänomen. Denn noch weiß niemand so genau, warum manche Stoffe unterhalb einer bestimmten Temperatur plötzlich supraleitend werden. Forscher des Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) stellen in der aktuellen Ausgabe der Zeitschrift Nature Materials neue Ergebnisse vor, die einen alten Streit um die richtige Theorie lösen könnten.
Sicher ist, dass in der Nähe der Sprungtemperatur - unterhalb derer der elektrische Widerstand kaum noch messbar ist - ein Phasenübergang von "nichtleitend" zu "leitend" stattfindet: die Atome im Kristallgitter sortieren sich um; das Material kann neue Eigenschaften erhalten. Eine Theorie geht davon aus, dass die Supraleitung als Eigenschaft bereits in den Ausgangsstoffen der Materialien, aus denen Supraleiter hergestellt werden, verankert ist: diese Ausgangsstoffe sind immer Isolatoren, also Stoffe, die den Strom nicht leiten. Leitend werden sie erst durch eine Dotierung, also wenn man Fremdatome ins Kristallgitter einbaut. Die zweite Theorie geht davon aus, dass in der Nähe der Sprungtemperatur im Material zwei Phasen gegeneinander "kämpfen" und dabei Supraleitung entsteht. "Die Richtigkeit dieser Theorie wird durch unsere Ergebnisse bestätigt", sagt Dimitri Argyriou vom HZB.
Zusammen mit seinem Team hat er eine Verbindung aus Lanthan-Strontium-Manganat untersucht. Dies ist ein Material, das zwar kein Supraleiter ist, aber ebenso wie diese durch Dotierung eines Isolator-Stoffes hergestellt wird. Lanthan-Strontium-Manganat ist allerdings nur ein schlecht leitendes Metall. Mit Hilfe der Neutronenstreuung haben Argyriou und sein Team dieses neuartige Metall näher untersucht und dabei einen Unterschied zu normalen Metallen entdeckt.
In realen Metallen wie Kupfer gibt es freibewegliche Elektronen, die für den Stromfluss sorgen, wobei sich die Elektronen nach heutiger Theorie zu einem so genannten Elektronengas zusammenfinden.
Im Lanthan-Strontium-Manganat - so die Erkenntnis der HZB-Forscher - verhalten sich die freien Elektronen nur für kurze Zeit wie ein Elektronengas. Sie "vergessen" nicht, dass sie ursprünglich aus einem Isolator stammen und werden plötzlich wieder im Kristallgitter eingeschlossen. Dieser Zustand wechselt hin und her, sodass sie mal frei beweglich (leitend) und dann wieder eingeschlossen (nicht leitend) sind.
"Dieses Verhalten beweist, dass die Isolator-Eigenschaft im Gedächtnis der dotierten Materialien verankert bleibt und die Eigenschaft Supraleitung nicht in dem Grundstoff existiert", schlussfolgert Dimitri Argyriou.
Institut Komplexe Magnetische Materialien
Dr. Dimitri Argyriou
Tel.: (030) 8062-3016
Fax: (030) 8062-2999
Email: argyriou@helmholtz-berlin.de
Pressestelle
Dr. Ina Helms
Tel.: (030) 8062-2034
Fax: (030) 8062-2998
Email: ina.helms@helmholtz-berlin.de
http://www.helmholtz-berlin.de/aktuell/pr/pm/pm-archiv/2009/pm-argyriou-polarone...
Merkmale dieser Pressemitteilung:
Physik / Astronomie, Werkstoffwissenschaften
überregional
Forschungsergebnisse, Wissenschaftliche Publikationen
Deutsch

Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.
Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).
Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.
Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).
Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).