idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
08.07.2010 10:29

Heusler-Materialien: Goldmine für Zukunftstechnologien

Petra Giegerich Kommunikation und Presse
Johannes Gutenberg-Universität Mainz

    Neuer Quantenzustand der Materie in Heusler-Verbindungen entdeckt – Forscher aus Mainz und Stanford zeigen Wege für Spin-Elektronik, Quantencomputing und für völlig neue physikalische Effekte

    Schon seit vielen Jahren sind Wissenschaftler der Johannes Gutenberg-Universität Mainz weltführend in der Forschung über Heusler-Verbindungen als wichtige Materialklasse für die Spin-Elektronik. In den letzten Jahren sind neue Anwendungsgebiete im Bereich der erneuerbaren Energien wie Solarenergie und Thermoelektrik hinzugekommen. Nun geraten die Heusler-Verbindungen auch in den Blickpunkt für Zukunftstechnologien wie den Quantencomputer. „Wir haben aufgrund von Berechnungen einen neuen Quantenzustand der Materie in Heusler-Verbindungen entdeckt, was absolut ungeahnte Möglichkeiten für ihre Verwendung eröffnet“, teilte Univ.-Prof. Dr. Claudia Felser mit. „Heusler-Materialien sind wahre Alleskönner und eine Goldmine für Zukunftstechnologien.“ Zusammen mit Prof. Shou Cheng Zhang von der Stanford University zeigt die Mainzer Wissenschaftlerin, dass sich zahlreiche Heusler-Verbindungen wie topologische Isolatoren (TI) verhalten können. TI wurden erst vor fünf Jahren entdeckt.

    Schlüsselentdeckungen in der Physik oder den Materialwissenschaften werden häufig eher zufällig bei Messungen im Labor gemacht. Im Fall der sogenannten topologischen Isolatoren war das anders. 2006 sagte Prof. Zhang aus Stanford einen neuen Quantenzustand der Materie in Nanostrukturen des bekannten Halbleiters Quecksilber-Tellurid (HgTe) voraus. Ein Jahr später wurde der Effekt von dem Würzburger Team um Laurens Molenkamp experimentell bestätigt. Um physikalisch zu verstehen, was dabei vor sich geht, werden völlig neue mathematische Konzepte benötigt.

    Seit fast 5 Jahren sind die TI das Hot Topic in der Festkörper- und Materialphysik. Kennzeichnend für die topologischen Isolatoren ist, dass die Materialien eigentlich Isolatoren oder Halbleiter sind, an der Oberfläche oder an Grenzflächen sind sie allerdings metallisch, aber eben nicht wie normale Metalle. Ähnlich wie bei Supraleitern zeigen die Elektronen an der Oberfläche oder den Grenzflächen keine Wechselwirkung mit ihrer Umgebung, sie befinden sich in einem neuen Quantenzustand. Anders als in Supraleitern zeigen topologische Isolatoren zwei nichtwechselwirkende Ströme, jeweils einen für jede Spinrichtung. Der Spin ist der Eigendrehimpuls der Elektronen. Diese beiden Spinströme, die weder Defekte noch Verunreinigungen im Material wahrnehmen, können für die Zukunftselektronik „Spintronik“ und zur Informationsverarbeitung in Quantencomputern genutzt werden.

    Diese Fähigkeiten werden nun auch für Heusler-Materialien vorausgesagt. Heusler-Verbindungen sind Verbindungen aus drei Elementen, die häufig halbleitend oder magnetisch sind. Schon um 1900 wurde diese Verbindungsklasse von Fritz Heusler entdeckt. Das Besondere an den Verbindungen ist, dass sie ganz andere Eigenschaften zeigen, als man aus der Kombination der Elemente, aus denen sie hergestellt werden, vermuten könnte. So wurde die erste Heusler-Verbindung aus den nichtmagnetischen Elementen Kupfer, Mangan und Aluminium hergestellt; Cu2MnAl ist aber ein Ferromagnet, sogar bei Raumtemperatur. Verbindungen aus drei guten Metallen sind plötzlich Halbleiter und für erneuerbare Energien wie Solarzellen oder für die Umwandlung von Wärme in Strom, die Thermoelektrik, interessant. Mainz ist international und auch bei potentiellen Anwendern als Standort für das Design oder die Herstellung von Heusler-Materialien bekannt. Grundlegende Erkenntnisse über Heusler-Verbindungen und ihre Eigenschaften und damit über eine etwaige Nutzung für viele künftige Anwendungen wurden in Mainz gewonnen.

    Dass Heusler-Materialien nun auch als topologische Isolatoren in Frage kommen, hat weltweit für Aufregung gesorgt. „Dafür gibt es zwei Gründe“, erklärt Felser. „Zum einen gibt es in dieser großen Materialklasse mit mehr als 1000 bekannten Vertretern alleine mehr als 50 Verbindungen, die den Fingerabdruck der TI zeigen. Zum anderen können ganz neue physikalische Effekte designt werden, da die Materialien aus drei Elementen bestehen und daher neben dem topologischen Quantenzustand weitere interessante Eigenschaften aufweisen können.“ So sind Kombinationen von zwei Quantenzuständen wie Supraleitung und topologischen Oberflächenzuständen möglich. Es sind zudem noch nicht entdeckte, aber teilweise schon vorhergesagte Eigenschaften denkbar. „Es ist völlig neu, dass all diese Möglichkeiten in nur einem Material zusammenkommen“, so Felser.

    Die renommierte Fachzeitschrift Nature Materials hat vor diesem Hintergrund gleich drei Artikel zu dem Thema veröffentlicht: den Artikel des Entdeckerteams aus Stanford und Mainz, eine kurze Zeit später eingereichte Arbeit aus Princeton und einen Kommentar über die sensationelle Entdeckung.

    Veröffentlichung:
    Stanislav Chadov, Xiaoliang Qi, Jürgen Kübler, Gerhard H. Fecher, Claudia Felser & Shou Cheng Zhang
    Tunable multifunctional topological insulators in ternary Heusler compounds
    Nature Materials, published online May 2010, doi:10.1038/nmat2770
    Nature Materials Volume: 9, Pages: 541–545

    Weitere Informationen:
    Univ.-Prof. Dr. Claudia Felser
    Direktorin der Graduiertenschule Materials Science in Mainz
    Institut für Anorganische Chemie und Analytische Chemie
    Johannes Gutenberg-Universität Mainz (JGU)
    55099 Mainz
    Tel. +49 6131 39-26266
    Fax +49 6131 39-26267
    E-Mail: felser@uni-mainz.de


    Weitere Informationen:

    http://www.superconductivity.de/
    http://www.uni-mainz.de/forschung/15958.php
    http://www.nature.com/nmat/journal/v9/n7/abs/nmat2770.html (Veröffentlichung)
    http://www.nature.com/nmat/journal/v9/n7/abs/nmat2783.html (Kommentar)


    Bilder

    Merkmale dieser Pressemitteilung:
    Chemie, Informationstechnik, Mathematik, Physik / Astronomie, Werkstoffwissenschaften
    überregional
    Forschungsergebnisse
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).