idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
28.10.2011 10:51

Den Abstand von Prozessen messen: RUB-Forscher entwickeln neues Verfahren in der Spektralanalyse

Dr. Josef König Pressestelle
Ruhr-Universität Bochum

    Einen Meilenstein zur Beschreibung komplexer Prozesse – zum Beispiel beim Auf und Ab von Aktienkursen – haben Mathematiker der Ruhr-Universität Bochum erreicht. Forscher um Prof. Dr. Holger Dette (Stochastik) entwickelten ein neues Verfahren in der Spektralanalyse, mit dem sich eine klassische mathematische Modellannahme, die so genannte Stationarität, erstmals konkret messen und bestimmen lässt. Der Ansatz bietet zudem die Möglichkeit, statistische Tests zu konstruieren, die wesentlich besser und genauer sind als bisherige Methoden.

    Den Abstand von Prozessen messen
    RUB-Forscher entwickeln neues Verfahren in der Spektralanalyse
    Mathematik: Meilenstein für bessere statistische Modelle erreicht

    Einen Meilenstein zur Beschreibung komplexer Prozesse – zum Beispiel beim Auf und Ab von Aktienkursen – haben Mathematiker der Ruhr-Universität Bochum erreicht. Forscher um Prof. Dr. Holger Dette (Stochastik) entwickelten ein neues Verfahren in der Spektralanalyse, mit dem sich eine klassische mathematische Modellannahme, die so genannte Stationarität, erstmals konkret messen und bestimmen lässt. Der Ansatz bietet zudem die Möglichkeit, statistische Tests zu konstruieren, die wesentlich besser und genauer sind als bisherige Methoden. Über ihre Ergebnisse berichten die Wissenschaftler in der renommierten Zeitschrift „Journal of the American Statistical Association“.

    Stationär oder instationär – das ist die Frage

    Beispiel Aktienkurse: Fast alle ökonomischen Modelle und Prognosewerkzeuge „kränkeln“ daran, dass sie eine falsche Grundannahme haben. Sie gehen davon aus, dass die durchschnittliche Schwankung einzelner Kurse und das Abhängigkeitsverhalten zwischen verschiedenen Aktien sich nicht über die Zeit ändern. Die Entwicklung der Aktienkurse wäre demnach „stationär“. Diese Annahme entpuppt sich in Krisenzeiten meist als falsch, da sich z.B. unter normalen Marktbedingungen viele Kurse kaum bis gar nicht untereinander beeinflussen, während sie in einem Crash fast alle gleichzeitig fallen. Dies belegt, dass ein derartiger Prozess im Allgemeinen instationär ist.

    Die Lösung: ein neues Abstandsmaß

    Den Clou fanden die Bochumer Stochastiker Prof. Dr. Holger Dette, M.Sc. Philip Preuß und Dr. Mathias Vetter, indem sie ein Abstandsmaß zwischen dem stationären und instationären Prozess berechneten. „So wie man auf der Erde Entfernungen zwischen zwei Orten bestimmen kann, ist es uns gelungen, auch die Entfernungen bzw. die Abstände zwischen den Prozessen zu messen“, sagt Prof. Dette. Das Maß ist genau dann 0, wenn die Annahme der Stationarität auf den Prozess zutrifft. Dieser Abstand lässt sich aus den Daten schätzen und liefert damit ein zuverlässiges Werkzeug für die Spektralanalyse von so genannten Zeitreihen, etwa den Aktienkursen oder Klimadaten. „Das Ziel statistischer Untersuchungen von Zeitreihen besteht stets darin, die zugrunde liegenden Abhängigkeiten zu verstehen, um damit dann möglichst genaue Prognosen für das zukünftige Verhalten dieser Prozesse abgeben zu können“, so Prof. Dette.

    Durch die Finanzkrisen motiviert

    „Unsere Forschungsarbeiten sind stark durch die letzten Finanzkrisen motiviert. Damals hatten fast alle ökonomischen Modelle und Prognosen für Kreditausfälle versagt, weil sie extreme Abhängigkeiten nicht angemessen berücksichtigen. Langfristig wollen wir Modelle und Methoden entwickeln, die solche Ereignisse besser vorhersagen“, sagt Dette. Entscheidend für den Erfolg sind neue Methoden der asymptotischen Statistik, die die Bochumer Mathematiker seit Jahren erforschen, finanziert von der Deutschen Forschungsgemeinschaft im Sonderforschungsbereich SFB 823 „Statistik nichtlinearer dynamischer Prozesse“ (Sprecherhochschule: TU Dortmund). Hier arbeiten die Bochumer Statistiker gemeinsam mit Kollegen von der Technischen Universität Dortmund an neuen statistischen Verfahren, um häufig verwendete Modellannahmen statistisch zu verifizieren und gegebenenfalls neue und bessere Modelle zu entwickeln.

    Titelaufnahme

    Holger Dette, Philip Preuß, Mathias Vetter. A Measure of Stationarity in Locally Stationary Processes With Applications to Testing. Journal of the American Statistical Association Sep 2011, Vol. 106, No. 495, 1113-1124. doi:10.1198/jasa.2011.tm10811

    Weitere Informationen

    Prof. Dr. Holger Dette, Lehrstuhl für Stochastik, Fakultät für Mathematik der RUB, Tel. 0234/32-28284, holger.dette@rub.de

    Redaktion: Jens Wylkop


    Bilder

    Spektraldichte eines lokalen und eines stationären Prozesses – hier am Beispiel der EKG-Daten eines neugeborenen Kindes (rechts). Wäre die Annahme der Stationarität erfüllt (links), dürfte die Fläche nicht in beide Richtungen variieren
    Spektraldichte eines lokalen und eines stationären Prozesses – hier am Beispiel der EKG-Daten eines ...

    None


    Merkmale dieser Pressemitteilung:
    Journalisten
    Mathematik, Wirtschaft
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    Spektraldichte eines lokalen und eines stationären Prozesses – hier am Beispiel der EKG-Daten eines neugeborenen Kindes (rechts). Wäre die Annahme der Stationarität erfüllt (links), dürfte die Fläche nicht in beide Richtungen variieren


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).