Einen Meilenstein zur Beschreibung komplexer Prozesse – zum Beispiel beim Auf und Ab von Aktienkursen – haben Mathematiker der Ruhr-Universität Bochum erreicht. Forscher um Prof. Dr. Holger Dette (Stochastik) entwickelten ein neues Verfahren in der Spektralanalyse, mit dem sich eine klassische mathematische Modellannahme, die so genannte Stationarität, erstmals konkret messen und bestimmen lässt. Der Ansatz bietet zudem die Möglichkeit, statistische Tests zu konstruieren, die wesentlich besser und genauer sind als bisherige Methoden.
Den Abstand von Prozessen messen
RUB-Forscher entwickeln neues Verfahren in der Spektralanalyse
Mathematik: Meilenstein für bessere statistische Modelle erreicht
Einen Meilenstein zur Beschreibung komplexer Prozesse – zum Beispiel beim Auf und Ab von Aktienkursen – haben Mathematiker der Ruhr-Universität Bochum erreicht. Forscher um Prof. Dr. Holger Dette (Stochastik) entwickelten ein neues Verfahren in der Spektralanalyse, mit dem sich eine klassische mathematische Modellannahme, die so genannte Stationarität, erstmals konkret messen und bestimmen lässt. Der Ansatz bietet zudem die Möglichkeit, statistische Tests zu konstruieren, die wesentlich besser und genauer sind als bisherige Methoden. Über ihre Ergebnisse berichten die Wissenschaftler in der renommierten Zeitschrift „Journal of the American Statistical Association“.
Stationär oder instationär – das ist die Frage
Beispiel Aktienkurse: Fast alle ökonomischen Modelle und Prognosewerkzeuge „kränkeln“ daran, dass sie eine falsche Grundannahme haben. Sie gehen davon aus, dass die durchschnittliche Schwankung einzelner Kurse und das Abhängigkeitsverhalten zwischen verschiedenen Aktien sich nicht über die Zeit ändern. Die Entwicklung der Aktienkurse wäre demnach „stationär“. Diese Annahme entpuppt sich in Krisenzeiten meist als falsch, da sich z.B. unter normalen Marktbedingungen viele Kurse kaum bis gar nicht untereinander beeinflussen, während sie in einem Crash fast alle gleichzeitig fallen. Dies belegt, dass ein derartiger Prozess im Allgemeinen instationär ist.
Die Lösung: ein neues Abstandsmaß
Den Clou fanden die Bochumer Stochastiker Prof. Dr. Holger Dette, M.Sc. Philip Preuß und Dr. Mathias Vetter, indem sie ein Abstandsmaß zwischen dem stationären und instationären Prozess berechneten. „So wie man auf der Erde Entfernungen zwischen zwei Orten bestimmen kann, ist es uns gelungen, auch die Entfernungen bzw. die Abstände zwischen den Prozessen zu messen“, sagt Prof. Dette. Das Maß ist genau dann 0, wenn die Annahme der Stationarität auf den Prozess zutrifft. Dieser Abstand lässt sich aus den Daten schätzen und liefert damit ein zuverlässiges Werkzeug für die Spektralanalyse von so genannten Zeitreihen, etwa den Aktienkursen oder Klimadaten. „Das Ziel statistischer Untersuchungen von Zeitreihen besteht stets darin, die zugrunde liegenden Abhängigkeiten zu verstehen, um damit dann möglichst genaue Prognosen für das zukünftige Verhalten dieser Prozesse abgeben zu können“, so Prof. Dette.
Durch die Finanzkrisen motiviert
„Unsere Forschungsarbeiten sind stark durch die letzten Finanzkrisen motiviert. Damals hatten fast alle ökonomischen Modelle und Prognosen für Kreditausfälle versagt, weil sie extreme Abhängigkeiten nicht angemessen berücksichtigen. Langfristig wollen wir Modelle und Methoden entwickeln, die solche Ereignisse besser vorhersagen“, sagt Dette. Entscheidend für den Erfolg sind neue Methoden der asymptotischen Statistik, die die Bochumer Mathematiker seit Jahren erforschen, finanziert von der Deutschen Forschungsgemeinschaft im Sonderforschungsbereich SFB 823 „Statistik nichtlinearer dynamischer Prozesse“ (Sprecherhochschule: TU Dortmund). Hier arbeiten die Bochumer Statistiker gemeinsam mit Kollegen von der Technischen Universität Dortmund an neuen statistischen Verfahren, um häufig verwendete Modellannahmen statistisch zu verifizieren und gegebenenfalls neue und bessere Modelle zu entwickeln.
Titelaufnahme
Holger Dette, Philip Preuß, Mathias Vetter. A Measure of Stationarity in Locally Stationary Processes With Applications to Testing. Journal of the American Statistical Association Sep 2011, Vol. 106, No. 495, 1113-1124. doi:10.1198/jasa.2011.tm10811
Weitere Informationen
Prof. Dr. Holger Dette, Lehrstuhl für Stochastik, Fakultät für Mathematik der RUB, Tel. 0234/32-28284, holger.dette@rub.de
Redaktion: Jens Wylkop
Spektraldichte eines lokalen und eines stationären Prozesses – hier am Beispiel der EKG-Daten eines ...
None
Merkmale dieser Pressemitteilung:
Journalisten
Mathematik, Wirtschaft
überregional
Forschungsergebnisse, Wissenschaftliche Publikationen
Deutsch
Spektraldichte eines lokalen und eines stationären Prozesses – hier am Beispiel der EKG-Daten eines ...
None
Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.
Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).
Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.
Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).
Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).