idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
22.12.2011 08:45

Wie sich Reaktionen in einer Brennstoffzelle auf Nanometerebene beschreiben lassen

Marietta Fuhrmann-Koch Kommunikation und Marketing
Ruprecht-Karls-Universität Heidelberg

    Erstmals lassen sich die physikalisch-chemischen Reaktionen einer Brennstoffzelle detailliert auf Nanometerebene beobachten und beschreiben. Möglich wird dies durch eine neue Mikroskopietechnik, die ein internationales Wissenschaftlerteam mit dem Heidelberger Mathematiker Dr. Francesco Ciucci sowie Forschern aus den USA und der Ukraine entwickelt hat. Damit kann der Prozess der Sauerstoffreduktion, der für die Energiegewinnung in einer Brennstoffzelle von Bedeutung ist, mit der Auflösung von einem Millionstel eines Millimeters erfasst werden. Die Forschungsergebnisse sollen zur Realisierung effizienter und leistungsstarker Wasserstoff-Brennstoffzellen beitragen.

    Pressemitteilung
    Heidelberg, 22. Dezember 2011

    Wie sich Reaktionen in einer Brennstoffzelle auf Nanometerebene beschreiben lassen
    Internationales Forscherteam mit Heidelberger Beteiligung entwickelt eine neue Mikroskopietechnik

    Erstmals lassen sich die physikalisch-chemischen Reaktionen einer Brennstoffzelle detailliert auf Nanometerebene beobachten und beschreiben. Möglich wird dies durch eine neue Mikroskopietechnik, die ein internationales Wissenschaftlerteam mit dem Heidelberger Mathematiker Dr. Francesco Ciucci sowie Forschern aus den USA und der Ukraine entwickelt hat. Damit kann der Prozess der Sauerstoffreduktion, der für die Energiegewinnung in einer Brennstoffzelle von Bedeutung ist, mit der Auflösung von einem Millionstel eines Millimeters erfasst werden. Die Forschungsergebnisse sollen zur Realisierung effizienter und leistungsstarker Wasserstoff-Brennstoffzellen beitragen.
    Brennstoffzellen wandeln die chemische Energie eines Brennstoffes wie etwa Wasserstoff in elektrische Energie um. Eine Wasserstoff-Brennstoffzelle ist aus zwei gegenüberliegenden Elektroden aufgebaut, die durch einen Ionenleiter getrennt sind. Die Gewinnung von elektrischer Energie erfolgt durch Ionenaustausch zwischen den beiden Elektroden: Der in der Luft gelöste Sauerstoff reagiert mit dem von außen zugeführten Wasserstoff. Bei dieser sogenannten Sauerstoffreduktion spielt ein Katalysator – häufig ist dies das seltene und teure Edelmetall Platin – als Reaktionsbeschleuniger eine wesentliche Rolle. Dabei ist es der Prozess der Sauerstoffreduktion, der nach den Worten von Francesco Ciucci den limitierenden Faktor für die Langlebigkeit und Effizienz von Brennstoffzellen darstellt.

    „Um den Ionenaustausch zwischen den Elektroden optimieren zu können, müssen grundlegende Fragen beantwortet werden: Wie und wo genau findet die Reduktion des Sauerstoffs statt und auf welche Weise funktioniert Platin als Katalysator? Zur Entschlüsselung der Reaktionsdynamik hat uns bisher jedoch ein geeignetes Untersuchungsinstrument gefehlt“, sagt der Mathematiker, der seine Forschungen als Stipendiat an der Heidelberger Graduiertenschule der mathematischen und computergestützten Methoden für die Wissenschaften durchgeführt hat. So hat Dr. Ciucci zusammen mit Dr. Amit Kumar vom Oak Ridge National Laboratory in den USA und Dr. Anna Morozovska von der National Academy of Sciences in der Ukraine eine neue Mikroskopietechnik entwickelt, mit der der Ionenaustausch im Nanometerbereich erfasst werden kann. Das Verfahren wird als „Electrochemical Strain Microscopy“ (ESM) bezeichnet.

    Die ESM-Technik basiert auf einem mathematischen Modell, einer sogenannten partiellen Differentialgleichung, die die Bewegung des Sauerstoffes in verschiedenen Materialien beschreibt. Durch diese mathematische Beschreibung konnten die Messdaten der „Electrochemical Strain Microscopy“ auf dem Computerbildschirm visualisiert werden. „Dabei hat sich gezeigt, dass die Katalysatorschicht aus 50 Nanometer großen Platinpartikeln nicht überall gleichmäßig viel Ionenaustausch zulässt“, sagt Dr. Ciucci. Die innovative Mikroskopietechnik soll nicht nur zur Weiterentwickelung von Brennstoffzellen eingesetzt werden. Mit ihr können nach den Worten des Wissenschaftlers die chemischen Vorgänge an allen Oberflächen erforscht werden, bei denen die Materialien durch Ionenaustausch miteinander interagieren.

    Die Forschungsergebnisse wurden in der Fachzeitschrift „Nature Chemistry“ veröffentlicht.

    Originalpublikation:
    A. Kumar, F. Ciucci, A.N. Morozovska, S.V. Kalinin and S. Jesse: Measuring oxygen reduction/evolution reactions on the nanoscale. Nature Chemistry 3, 707-713 (2011), doi:10.1038/nchem.1112

    Hinweis an die Redaktionen:
    Digitales Bildmaterial ist in der Pressestelle erhältlich.

    Kontakt:
    Sabine Kluge
    Interdisziplinäres Zentrum für Wissenschaftliches Rechnen
    Telefon (06221) 54-8854
    sabine.kluge@iwr.uni-heidelberg.de

    Kommunikation und Marketing
    Pressestelle, Telefon (06221) 54-2311
    presse@rektorat.uni-heidelberg.de


    Bilder

    Merkmale dieser Pressemitteilung:
    Journalisten
    Mathematik
    überregional
    Forschungsergebnisse
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).