idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
13.02.2012 15:28

TU Berlin: Rapid procedure for the exploration of molecules

Stefanie Terp Presse- und Informationsreferat
Technische Universität Berlin

    Rapid procedure for the exploration of chemical compound space unites quantum chemistry with artificial intelligence

    Press Release by TU Berlin and Fritz-Haber-Institute of the Max-Planck-Gesellschaft

    Rapid procedure for the exploration of chemical compound space unites quantum chemistry with artificial intelligence

    By combining quantum chemistry with artificial intelligence (Machine Learning), researchers at the Institute for Pure and Applied Mathematics at the University of California, Los Angeles achieved a scientific breakthrough expected to aid in exploring chemical compound space, i.e. the virtual space populated by all possible chemical compounds.

    The interdisciplinary team from the Technische Universität Berlin (Germany), the Fritz-Haber Institute of the Max-Planck Society (Germany), and the Argonne Leadership Computing Facility (United States) dramatically increased the speed of calculating energies of small molecules with quantum chemical accuracy. Quantum chemical methods permit scientists to calculate molecular properties on a computer from first principles (i.e. without having to conduct any experiments) — they are necessary for many chemical applications such as catalysis, or the discovery of novel materials. Previously, such calculations demanded intensive computational resources.

    Machine Learning, on the other hand, generates predictive models based on examples. While common in daily life, such as in Google's internet search engines or Amazon's book suggestions, it is also used in scientific domains, such as genetic research or brain computer interfaces. When applied to quantum chemistry, thousands of quantum chemical reference energies have been calculated in order to "learn" a molecular model. The resulting Machine permits the prediction of molecular properties with comparable accuracy within milliseconds, instead of hours. Such speed-up paves the way for highly accurate calculations of unprecedentedly many molecules.

    Originally published in:
    Matthias Rupp, Alexandre Tkatschenko, Klaus-Robert Müller, and O. Anatole von Lilienfeld
    Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning
    Physical Review Letters 108, 058301 (2012) | doi:10.1103/PhysRevLett.108.058301

    For further information please contact: Prof. Dr. Klaus-Robert Müller, TU Berlin, Machine Learning Group, Tel.: 030/314-78620, E-Mail: klaus-robert.mueller@tu-berlin.de and Dr. Alexandre Tkatchenko, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Tel.: 030/8413-5737, E-Mail: tkatchen@fhi-berlin.mpg.de

    2.429 Zeichen


    Bilder

    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler
    Chemie, Informationstechnik
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Englisch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).